Suppr超能文献

16S折叠的同时成核与30S核糖体组装中的诱导契合。

Concurrent nucleation of 16S folding and induced fit in 30S ribosome assembly.

作者信息

Adilakshmi Tadepalli, Bellur Deepti L, Woodson Sarah A

机构信息

T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218-2685, USA.

出版信息

Nature. 2008 Oct 30;455(7217):1268-72. doi: 10.1038/nature07298. Epub 2008 Sep 10.

Abstract

Rapidly growing cells produce thousands of new ribosomes each minute, in a tightly regulated process that is essential to cell growth. How the Escherichia coli 16S ribosomal RNA and the 20 proteins that make up the 30S ribosomal subunit can assemble correctly in a few minutes remains a challenging problem, partly because of the lack of real-time data on the earliest stages of assembly. By providing snapshots of individual RNA and protein interactions as they emerge in real time, here we show that 30S assembly nucleates concurrently from different points along the rRNA. Time-resolved hydroxyl radical footprinting was used to map changes in the structure of the rRNA within 20 milliseconds after the addition of total 30S proteins. Helical junctions in each domain fold within 100 ms. In contrast, interactions surrounding the decoding site and between the 5', the central and the 3' domains require 2-200 seconds to form. Unexpectedly, nucleotides contacted by the same protein are protected at different rates, indicating that initial RNA-protein encounter complexes refold during assembly. Although early steps in assembly are linked to intrinsically stable rRNA structure, later steps correspond to regions of induced fit between the proteins and the rRNA.

摘要

快速生长的细胞每分钟会产生数千个新的核糖体,这一过程受到严格调控,对细胞生长至关重要。大肠杆菌的16S核糖体RNA以及构成30S核糖体亚基的20种蛋白质如何在几分钟内正确组装,仍然是一个具有挑战性的问题,部分原因是缺乏组装早期阶段的实时数据。通过实时提供单个RNA和蛋白质相互作用的快照,我们在此表明30S组装从rRNA上的不同点同时成核。在添加全部3’蛋白质后20毫秒内,利用时间分辨羟基自由基足迹法绘制rRNA结构的变化。每个结构域中的螺旋连接在100毫秒内折叠。相比之下,解码位点周围以及5’、中央和3’结构域之间的相互作用需要2至200秒才能形成。出乎意料的是,被同一蛋白质接触的核苷酸以不同速率受到保护,这表明初始的RNA-蛋白质相遇复合物在组装过程中会重新折叠。虽然组装的早期步骤与内在稳定的rRNA结构相关,但后期步骤对应于蛋白质与rRNA之间诱导契合的区域。

相似文献

1
Concurrent nucleation of 16S folding and induced fit in 30S ribosome assembly.
Nature. 2008 Oct 30;455(7217):1268-72. doi: 10.1038/nature07298. Epub 2008 Sep 10.
2
RNA folding pathways and the self-assembly of ribosomes.
Acc Chem Res. 2011 Dec 20;44(12):1312-9. doi: 10.1021/ar2000474. Epub 2011 Jun 29.
3
Specific contacts between protein S4 and ribosomal RNA are required at multiple stages of ribosome assembly.
RNA. 2013 Apr;19(4):574-85. doi: 10.1261/rna.037028.112. Epub 2013 Feb 21.
5
Assembly of the 5' and 3' minor domains of 16S ribosomal RNA as monitored by tethered probing from ribosomal protein S20.
J Mol Biol. 2008 Feb 8;376(1):92-108. doi: 10.1016/j.jmb.2007.10.083. Epub 2007 Nov 6.
7
Assembly of the 30S ribosomal subunit: positioning ribosomal protein S13 in the S7 assembly branch.
RNA. 2004 Dec;10(12):1861-6. doi: 10.1261/rna.7130504. Epub 2004 Nov 3.
9
Evolution of protein-coupled RNA dynamics during hierarchical assembly of ribosomal complexes.
Nat Commun. 2017 Sep 8;8(1):492. doi: 10.1038/s41467-017-00536-1.

引用本文的文献

4
Autonomous ribosome biogenesis in vitro.
Nat Commun. 2025 Jan 8;16(1):514. doi: 10.1038/s41467-025-55853-7.
5
Linker-Mediated Inactivation of the SAM-II Domain in the Tandem SAM-II/SAM-V Riboswitch.
Int J Mol Sci. 2024 Oct 20;25(20):11288. doi: 10.3390/ijms252011288.
6
Domain consolidation in Bacterial 50S assembly revealed by Anti-Sense Oligonucleotide Probing.
bioRxiv. 2024 May 8:2024.05.08.593220. doi: 10.1101/2024.05.08.593220.
7
Critical steps in the assembly process of the bacterial 50S ribosomal subunit.
Nucleic Acids Res. 2024 May 8;52(8):4111-4123. doi: 10.1093/nar/gkae199.
10
Ribosomal Protein S12 Hastens Nucleation of Co-Transcriptional Ribosome Assembly.
Biomolecules. 2023 Jun 6;13(6):951. doi: 10.3390/biom13060951.

本文引用的文献

1
Assembly of the 5' and 3' minor domains of 16S ribosomal RNA as monitored by tethered probing from ribosomal protein S20.
J Mol Biol. 2008 Feb 8;376(1):92-108. doi: 10.1016/j.jmb.2007.10.083. Epub 2007 Nov 6.
3
An assembly landscape for the 30S ribosomal subunit.
Nature. 2005 Dec 1;438(7068):628-32. doi: 10.1038/nature04261.
4
Structures of the bacterial ribosome at 3.5 A resolution.
Science. 2005 Nov 4;310(5749):827-34. doi: 10.1126/science.1117230.
5
Protein-independent folding pathway of the 16S rRNA 5' domain.
J Mol Biol. 2005 Aug 19;351(3):508-19. doi: 10.1016/j.jmb.2005.06.020.
6
Mapping nucleic acid structure by hydroxyl radical cleavage.
Curr Opin Chem Biol. 2005 Apr;9(2):127-34. doi: 10.1016/j.cbpa.2005.02.009.
7
Mapping structural differences between 30S ribosomal subunit assembly intermediates.
Nat Struct Mol Biol. 2004 Feb;11(2):179-86. doi: 10.1038/nsmb719. Epub 2004 Jan 11.
8
Economics of ribosome biosynthesis.
Cold Spring Harb Symp Quant Biol. 2001;66:567-74. doi: 10.1101/sqb.2001.66.567.
9
After the ribosome structures: how are the subunits assembled?
RNA. 2003 Feb;9(2):165-7. doi: 10.1261/rna.2164903.
10
Assembly of the 30S ribosomal subunit.
Biopolymers. 2003 Feb;68(2):234-49. doi: 10.1002/bip.10221.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验