Suppr超能文献

微环境的几何和空间限制诱导少突胶质细胞分化。

The geometric and spatial constraints of the microenvironment induce oligodendrocyte differentiation.

作者信息

Rosenberg Sheila S, Kelland Eve E, Tokar Eleonora, De la Torre Asia R, Chan Jonah R

机构信息

Neuroscience Graduate Program and Department of Biochemistry and Molecular Biology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.

出版信息

Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14662-7. doi: 10.1073/pnas.0805640105. Epub 2008 Sep 11.

Abstract

The oligodendrocyte precursor cell (OPC) arises from the subventricular zone (SVZ) during early vertebrate development to migrate and proliferate along axon tracts before differentiating into the myelin-forming oligodendrocyte. We demonstrate that the spatial and temporal regulation of oligodendrocyte differentiation depends intimately on the axonal microenvironment and the density of precursor cells along a specified axonal area. Differentiation does not require dynamic axonal signaling, but instead is induced by packing constraints resulting from intercellular interactions. Schwann cells and even artificial beads bound to the axonal surface can mimic these constraints and promote differentiation. Together, these results describe the coordinately controlled biophysical interaction of oligodendrocyte precursors within an axonal niche leading to self-renewal and differentiation.

摘要

少突胶质前体细胞(OPC)在脊椎动物早期发育过程中起源于脑室下区(SVZ),在分化为形成髓鞘的少突胶质细胞之前,沿轴突束迁移并增殖。我们证明,少突胶质细胞分化的时空调节密切依赖于轴突微环境以及特定轴突区域上前体细胞的密度。分化并不需要动态的轴突信号传导,而是由细胞间相互作用产生的堆积限制所诱导。施万细胞甚至与轴突表面结合的人工珠子都可以模拟这些限制并促进分化。总之,这些结果描述了轴突生态位内少突胶质前体细胞的协同控制的生物物理相互作用,从而导致自我更新和分化。

相似文献

1
The geometric and spatial constraints of the microenvironment induce oligodendrocyte differentiation.
Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14662-7. doi: 10.1073/pnas.0805640105. Epub 2008 Sep 11.
2
Density-dependent feedback inhibition of oligodendrocyte precursor expansion.
J Neurosci. 1996 Nov 1;16(21):6886-95. doi: 10.1523/JNEUROSCI.16-21-06886.1996.
3
Oligodendrocyte-spinal cord explant co-culture: an in vitro model for the study of myelination.
Brain Res. 2010 Jan 14;1309:9-18. doi: 10.1016/j.brainres.2009.10.060. Epub 2009 Oct 30.
5
Function of Lymphocytes in Oligodendrocyte Development.
Neuroscientist. 2020 Feb;26(1):74-86. doi: 10.1177/1073858419834221. Epub 2019 Mar 8.
6
Axonal control of oligodendrocyte development.
J Cell Biol. 1999 Dec 13;147(6):1123-8. doi: 10.1083/jcb.147.6.1123.
8
Cytoskeletal Linker Protein Dystonin Is Not Critical to Terminal Oligodendrocyte Differentiation or CNS Myelination.
PLoS One. 2016 Feb 17;11(2):e0149201. doi: 10.1371/journal.pone.0149201. eCollection 2016.
10
Regulation of oligodendrocyte differentiation: a role for retinoic acid in the spinal cord.
Development. 1994 Mar;120(3):649-60. doi: 10.1242/dev.120.3.649.

引用本文的文献

1
Neurorehabilitation and white matter repair in traumatic spinal cord injury: a dialogue between clinical and preclinical studies.
Front Neurol. 2025 Jun 18;16:1532056. doi: 10.3389/fneur.2025.1532056. eCollection 2025.
2
3
Plasticity of Myelination.
Adv Neurobiol. 2025;43:181-204. doi: 10.1007/978-3-031-87919-7_8.
4
-.
J Zhejiang Univ Sci B. 2025 Apr 23;26(4):303-316. doi: 10.1631/jzus.B2300776.
5
Bdnf-Ntrk2 Signaling Promotes but is not Essential for Spinal Cord Myelination in Larval Zebrafish.
bioRxiv. 2025 Feb 21:2025.02.19.639062. doi: 10.1101/2025.02.19.639062.
6
Myelin ensheathment and drug responses of oligodendrocytes are modulated by stiffness of artificial axons.
PLoS One. 2025 Jan 24;20(1):e0290521. doi: 10.1371/journal.pone.0290521. eCollection 2025.
7
Unraveling the role of oligodendrocytes and myelin in pain.
J Neurochem. 2025 Jan;169(1):e16206. doi: 10.1111/jnc.16206. Epub 2024 Aug 20.
10
Long-term in vivo three-photon imaging reveals region-specific differences in healthy and regenerative oligodendrogenesis.
Nat Neurosci. 2024 May;27(5):846-861. doi: 10.1038/s41593-024-01613-7. Epub 2024 Mar 27.

本文引用的文献

1
The transcription factor Yin Yang 1 is essential for oligodendrocyte progenitor differentiation.
Neuron. 2007 Jul 19;55(2):217-30. doi: 10.1016/j.neuron.2007.06.029.
2
Down-regulation of polysialic acid is required for efficient myelin formation.
J Biol Chem. 2007 Jun 1;282(22):16700-11. doi: 10.1074/jbc.M610797200. Epub 2007 Apr 9.
3
NGF regulates the expression of axonal LINGO-1 to inhibit oligodendrocyte differentiation and myelination.
J Neurosci. 2007 Jan 3;27(1):220-5. doi: 10.1523/JNEUROSCI.4175-06.2007.
4
The polarity protein Par-3 directly interacts with p75NTR to regulate myelination.
Science. 2006 Nov 3;314(5800):832-6. doi: 10.1126/science.1134069.
5
The mystery of intracellular developmental programmes and timers.
Biochem Soc Trans. 2006 Nov;34(Pt 5):663-70. doi: 10.1042/BST0340663.
6
Matrix elasticity directs stem cell lineage specification.
Cell. 2006 Aug 25;126(4):677-89. doi: 10.1016/j.cell.2006.06.044.
7
Neuregulin-1 type III determines the ensheathment fate of axons.
Neuron. 2005 Sep 1;47(5):681-94. doi: 10.1016/j.neuron.2005.08.017.
8
LINGO-1 negatively regulates myelination by oligodendrocytes.
Nat Neurosci. 2005 Jun;8(6):745-51. doi: 10.1038/nn1460. Epub 2005 May 15.
10
Integrins: versatile integrators of extracellular signals.
Trends Cell Biol. 2004 Dec;14(12):678-86. doi: 10.1016/j.tcb.2004.10.005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验