Suppr超能文献

风险是什么?一种从包括逻辑回归在内的非线性模型估计调整后风险度量的简单方法。

What's the Risk? A simple approach for estimating adjusted risk measures from nonlinear models including logistic regression.

作者信息

Kleinman Lawrence C, Norton Edward C

机构信息

Department of Health Policy, Mount Sinai School of Medicine, Box 1077, New York, NY 10029, USA.

出版信息

Health Serv Res. 2009 Feb;44(1):288-302. doi: 10.1111/j.1475-6773.2008.00900.x. Epub 2008 Sep 11.

Abstract

OBJECTIVE

To develop and validate a general method (called regression risk analysis) to estimate adjusted risk measures from logistic and other nonlinear multiple regression models. We show how to estimate standard errors for these estimates. These measures could supplant various approximations (e.g., adjusted odds ratio [AOR]) that may diverge, especially when outcomes are common.

STUDY DESIGN

Regression risk analysis estimates were compared with internal standards as well as with Mantel-Haenszel estimates, Poisson and log-binomial regressions, and a widely used (but flawed) equation to calculate adjusted risk ratios (ARR) from AOR.

DATA COLLECTION

Data sets produced using Monte Carlo simulations.

PRINCIPAL FINDINGS

Regression risk analysis accurately estimates ARR and differences directly from multiple regression models, even when confounders are continuous, distributions are skewed, outcomes are common, and effect size is large. It is statistically sound and intuitive, and has properties favoring it over other methods in many cases.

CONCLUSIONS

Regression risk analysis should be the new standard for presenting findings from multiple regression analysis of dichotomous outcomes for cross-sectional, cohort, and population-based case-control studies, particularly when outcomes are common or effect size is large.

摘要

目的

开发并验证一种通用方法(称为回归风险分析),以从逻辑回归和其他非线性多元回归模型中估计调整后的风险度量。我们展示了如何估计这些估计值的标准误差。这些度量可以取代各种可能存在偏差的近似方法(例如,调整后的比值比[AOR]),尤其是当结局较为常见时。

研究设计

将回归风险分析估计值与内部标准以及Mantel-Haenszel估计值、泊松回归和对数二项式回归进行比较,并与一个广泛使用(但有缺陷)的根据AOR计算调整后风险比(ARR)的方程进行比较。

数据收集

使用蒙特卡罗模拟生成的数据集。

主要发现

即使混杂因素是连续的、分布是偏态的、结局是常见的且效应大小较大,回归风险分析也能直接从多元回归模型中准确估计ARR和差异。它在统计学上合理且直观,在许多情况下具有优于其他方法的特性。

结论

对于横断面研究、队列研究和基于人群的病例对照研究中二分结局的多元回归分析结果呈现,回归风险分析应成为新标准,特别是当结局常见或效应大小较大时。

相似文献

1
What's the Risk? A simple approach for estimating adjusted risk measures from nonlinear models including logistic regression.
Health Serv Res. 2009 Feb;44(1):288-302. doi: 10.1111/j.1475-6773.2008.00900.x. Epub 2008 Sep 11.
2
Reducing Monte Carlo error in the Bayesian estimation of risk ratios using log-binomial regression models.
Stat Med. 2015 Aug 30;34(19):2755-67. doi: 10.1002/sim.6527. Epub 2015 May 5.
9
Standardized binomial models for risk or prevalence ratios and differences.
Int J Epidemiol. 2015 Oct;44(5):1660-72. doi: 10.1093/ije/dyv137. Epub 2015 Jul 30.
10
Estimating risk ratio from any standard epidemiological design by doubling the cases.
BMC Med Res Methodol. 2022 May 30;22(1):157. doi: 10.1186/s12874-022-01636-3.

引用本文的文献

2
Development and validation of a genetic probability for venous thromboembolism.
Res Pract Thromb Haemost. 2025 Apr 27;9(4):102876. doi: 10.1016/j.rpth.2025.102876. eCollection 2025 May.
5
Pediatric Lipid Screening Prevalence Using Nationwide Electronic Medical Records.
JAMA Netw Open. 2024 Jul 1;7(7):e2421724. doi: 10.1001/jamanetworkopen.2024.21724.
7
Racial and Ethnic and Rural Variations in Access to Primary Care for Veterans Following the MISSION Act.
JAMA Health Forum. 2024 Jun 7;5(6):e241568. doi: 10.1001/jamahealthforum.2024.1568.

本文引用的文献

2
Insuring children or insuring families: do parental and sibling coverage lead to improved retention of children in Medicaid and CHIP?
J Health Econ. 2006 Nov;25(6):1154-69. doi: 10.1016/j.jhealeco.2006.04.003. Epub 2006 Jun 5.
3
Easy SAS calculations for risk or prevalence ratios and differences.
Am J Epidemiol. 2005 Aug 1;162(3):199-200. doi: 10.1093/aje/kwi188. Epub 2005 Jun 29.
7
A modified poisson regression approach to prospective studies with binary data.
Am J Epidemiol. 2004 Apr 1;159(7):702-6. doi: 10.1093/aje/kwh090.
8
Re: "Estimating the relative risk in cohort studies and clinical trials of common outcomes".
Am J Epidemiol. 2004 Jan 15;159(2):213; author reply 214-5. doi: 10.1093/aje/kwh021.
9
Re: "Estimating the relative risk in cohort studies and clinical trials of common outcomes".
Am J Epidemiol. 2004 Jan 15;159(2):213-4; author reply 214-5. doi: 10.1093/aje/kwh022.
10
Estimating the relative risk in cohort studies and clinical trials of common outcomes.
Am J Epidemiol. 2003 May 15;157(10):940-3. doi: 10.1093/aje/kwg074.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验