He Yanan, Chen Yihong, Alexander Patrick, Bryan Philip N, Orban John
Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, 9600 Gudelsky Drive, Rockville, MD 20850, USA.
Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14412-7. doi: 10.1073/pnas.0805857105. Epub 2008 Sep 16.
How protein sequence codes for 3D structure remains a fundamental question in biology. One approach to understanding the folding code is to design a pair of proteins with maximal sequence identity but retaining different folds. Therefore, the nonidentities must be responsible for determining which fold topology prevails and constitute a fold-specific folding code. We recently designed two proteins, G(A)88 and G(B)88, with 88% sequence identity but different folds and functions [Alexander et al. (2007) Proc Natl Acad Sci USA 104:11963-11968]. Here, we describe the detailed 3D structures of these proteins determined in solution by NMR spectroscopy. Despite a large number of mutations taking the sequence identity level from 16 to 88%, G(A)88 and G(B)88 maintain their distinct wild-type 3-alpha and alpha/beta folds, respectively. To our knowledge, the 3D-structure determination of two monomeric proteins with such high sequence identity but different fold topology is unprecedented. The geometries of the seven nonidentical residues (of 56 total) provide insights into the structural basis for switching between 3-alpha and alpha/beta conformations. Further mutation of a subset of these nonidentities, guided by the G(A)88 and G(B)88 structures, leads to proteins with even higher levels of sequence identity (95%) and different folds. Thus, conformational switching to an alternative monomeric fold of comparable stability can be effected with just a handful of mutations in a small protein. This result has implications for understanding not only the folding code but also the evolution of new folds.
蛋白质序列如何编码三维结构仍然是生物学中的一个基本问题。理解折叠密码的一种方法是设计一对具有最大序列同一性但保留不同折叠的蛋白质。因此,非同一性残基必定决定了哪种折叠拓扑结构占主导,并构成了特定折叠的折叠密码。我们最近设计了两种蛋白质,G(A)88和G(B)88,它们具有88%的序列同一性,但折叠和功能不同[亚历山大等人(2007年)《美国国家科学院院刊》104:11963 - 11968]。在此,我们描述了通过核磁共振光谱在溶液中测定的这些蛋白质的详细三维结构。尽管大量突变使序列同一性水平从16%提高到了88%,但G(A)88和G(B)88分别保持了它们独特的野生型三螺旋和α/β折叠。据我们所知,对具有如此高序列同一性但不同折叠拓扑的两种单体蛋白质进行三维结构测定是前所未有的。这56个残基中七个非同一残基的几何结构为三螺旋和α/β构象之间的转换提供了结构基础的见解。在G(A)88和G(B)88结构的指导下,对这些非同一残基的一个子集进行进一步突变,得到了具有更高序列同一性水平(95%)且折叠不同的蛋白质。因此,在一个小蛋白质中只需少数几个突变就能实现向具有相当稳定性的另一种单体折叠的构象转换。这一结果不仅对理解折叠密码有意义,而且对新折叠的进化也有意义。