Suppr超能文献

FIH-1的配位变化与自羟基化:人类缺氧传感器中解偶联的O2激活

Coordination changes and auto-hydroxylation of FIH-1: uncoupled O2-activation in a human hypoxia sensor.

作者信息

Chen Yuan-Han, Comeaux Lindsay M, Herbst Robert W, Saban Evren, Kennedy David C, Maroney Michael J, Knapp Michael J

机构信息

Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA.

出版信息

J Inorg Biochem. 2008 Dec;102(12):2120-9. doi: 10.1016/j.jinorgbio.2008.07.018. Epub 2008 Aug 8.

Abstract

Hypoxia sensing is the generic term for pO2-sensing in humans and other higher organisms. These cellular responses to pO2 are largely controlled by enzymes that belong to the Fe(II) alpha-ketoglutarate (alphaKG) dependent dioxygenase superfamily, including the human enzyme called the factor inhibiting HIF (FIH-1), which couples O2-activation to the hydroxylation of the hypoxia inducible factor alpha (HIFalpha). Uncoupled O2-activation by human FIH-1 was studied by exposing the resting form of FIH-1 (alphaKG + Fe)FIH-1, to air in the absence of HIFalpha. Uncoupling lead to two distinct enzyme oxidations, one a purple chromophore (lambda(max) = 583 nm) arising from enzyme auto-hydroxylation of Trp296, forming an Fe(III)-O-Trp296 chromophore [Y.-H. Chen, L.M. Comeaux, S.J. Eyles, M.J. Knapp, Chem. Commun. (2008), doi:10.1039/B809099H]; the other a yellow chromophore due to Fe(III) in the active site, which under some conditions also contained variable levels of an oxygenated surface residue (oxo)Met275. The kinetics of purple FIH-1 formation were independent of Fe(II) and alphaKG concentrations, however, product yield was saturable with increasing [alphaKG] and required excess Fe(II). Yellow FIH-1 was formed from (succinate+Fe)FIH-1, or by glycerol addition to (alphaKG+Fe)FIH-1, suggesting that glycerol could intercept the active oxidant from the FIH-1 active site and prevent hydroxylation. Both purple and yellow FIH-1 contained high-spin, rhombic Fe(III) centers, as shown by low temperature EPR. XAS indicated distorted octahedral Fe(III) geometries, with subtle differences in inner-shell ligands for yellow and purple FIH-1. EPR of Co(II)-substituted FIH-1 (alphaKG + Co)FIH-1, indicated a mixture of 5-coordinate and 6-coordinate enzyme forms, suggesting that resting FIH-1 can readily undergo uncoupled O2-activation by loss of an H2O ligand from the metal center.

摘要

缺氧感应是人类和其他高等生物中对氧分压(pO2)进行感应的通用术语。这些细胞对pO2的反应在很大程度上受属于依赖于Fe(II)α-酮戊二酸(αKG)的双加氧酶超家族的酶控制,包括人类的一种名为缺氧诱导因子抑制因子(FIH-1)的酶,它将O2激活与缺氧诱导因子α(HIFα)的羟基化偶联起来。通过将静止形式的FIH-1(αKG + Fe)FIH-1在不存在HIFα的情况下暴露于空气中,研究了人类FIH-1的未偶联O2激活。未偶联导致两种不同的酶氧化,一种是由Trp296的酶自身羟基化产生的紫色发色团(λmax = 583 nm),形成Fe(III)-O-Trp296发色团[陈义华,L.M. 科莫,S.J. 艾尔斯,M.J. 克纳普,《化学通讯》(2008年),doi:10.1039/B809099H];另一种是由于活性位点中的Fe(III)产生的黄色发色团,在某些条件下,其还含有可变水平的氧化表面残基(氧代)Met275。紫色FIH-1形成的动力学与Fe(II)和αKG浓度无关,然而,产物产率随着[αKG]的增加而饱和,并且需要过量的Fe(II)。黄色FIH-1由(琥珀酸 + Fe)FIH-1形成,或者通过向(αKG + Fe)FIH-1中添加甘油形成,这表明甘油可以从FIH-1活性位点截获活性氧化剂并防止羟基化。如低温电子顺磁共振所示,紫色和黄色FIH-1均含有高自旋、菱形的Fe(III)中心。X射线吸收光谱表明Fe(III)的八面体几何结构发生扭曲,黄色和紫色FIH-1在内层配体上存在细微差异。Co(II)取代的FIH-1(αKG + Co)FIH-1的电子顺磁共振表明存在五配位和六配位酶形式的混合物,这表明静止的FIH-1可以通过从金属中心失去一个H2O配体而容易地发生未偶联的O2激活。

相似文献

1
Coordination changes and auto-hydroxylation of FIH-1: uncoupled O2-activation in a human hypoxia sensor.
J Inorg Biochem. 2008 Dec;102(12):2120-9. doi: 10.1016/j.jinorgbio.2008.07.018. Epub 2008 Aug 8.
2
Auto-hydroxylation of FIH-1: an Fe(ii), alpha-ketoglutarate-dependent human hypoxia sensor.
Chem Commun (Camb). 2008 Oct 21(39):4768-70. doi: 10.1039/b809099h. Epub 2008 Aug 11.
3
Spectroscopic studies of the mononuclear non-heme Fe(II) enzyme FIH: second-sphere contributions to reactivity.
J Am Chem Soc. 2013 Jul 3;135(26):9665-74. doi: 10.1021/ja312571m. Epub 2013 Jun 20.
4
O Activation by Nonheme Fe α-Ketoglutarate-Dependent Enzyme Variants: Elucidating the Role of the Facial Triad Carboxylate in FIH.
J Am Chem Soc. 2018 Sep 19;140(37):11777-11783. doi: 10.1021/jacs.8b07277. Epub 2018 Sep 10.
5
The facial triad in the α-ketoglutarate dependent oxygenase FIH: A role for sterics in linking substrate binding to O activation.
J Inorg Biochem. 2017 Jan;166:26-33. doi: 10.1016/j.jinorgbio.2016.10.007. Epub 2016 Oct 17.
6
Inverse solvent isotope effects arising from substrate triggering in the factor inhibiting hypoxia inducible factor.
Biochemistry. 2013 Mar 5;52(9):1594-602. doi: 10.1021/bi3015482. Epub 2013 Feb 18.
7
The second coordination sphere of FIH controls hydroxylation.
Biochemistry. 2011 May 31;50(21):4733-40. doi: 10.1021/bi102042t. Epub 2011 May 3.
9
Substrate positioning by Gln(239) stimulates turnover in factor inhibiting HIF, an αKG-dependent hydroxylase.
Biochemistry. 2014 Sep 16;53(36):5750-8. doi: 10.1021/bi500703s. Epub 2014 Aug 29.
10
Kinetic Studies of the Hydrogen Atom Transfer in a Hypoxia-Sensing Enzyme, FIH-1: KIE and O Reactivity.
Biochemistry. 2021 Nov 9;60(44):3315-3322. doi: 10.1021/acs.biochem.1c00476. Epub 2021 Oct 29.

引用本文的文献

2
Controllable multi-halogenation of a non-native substrate by SyrB2 iron halogenase.
bioRxiv. 2024 May 9:2024.05.08.593161. doi: 10.1101/2024.05.08.593161.
5
O Activation by Nonheme Fe α-Ketoglutarate-Dependent Enzyme Variants: Elucidating the Role of the Facial Triad Carboxylate in FIH.
J Am Chem Soc. 2018 Sep 19;140(37):11777-11783. doi: 10.1021/jacs.8b07277. Epub 2018 Sep 10.
6
Investigations on the role of a solvent tunnel in the α-ketoglutarate dependent oxygenase factor inhibiting HIF (FIH).
J Inorg Biochem. 2018 Jan;178:63-69. doi: 10.1016/j.jinorgbio.2017.10.001. Epub 2017 Oct 7.
7
The facial triad in the α-ketoglutarate dependent oxygenase FIH: A role for sterics in linking substrate binding to O activation.
J Inorg Biochem. 2017 Jan;166:26-33. doi: 10.1016/j.jinorgbio.2016.10.007. Epub 2016 Oct 17.
8
Substrate Promotes Productive Gas Binding in the α-Ketoglutarate-Dependent Oxygenase FIH.
Biochemistry. 2016 Jan 19;55(2):277-86. doi: 10.1021/acs.biochem.5b01003. Epub 2016 Jan 5.
9
Electron flow through biological molecules: does hole hopping protect proteins from oxidative damage?
Q Rev Biophys. 2015 Nov;48(4):411-20. doi: 10.1017/S0033583515000062.
10
The rate-limiting step of O2 activation in the α-ketoglutarate oxygenase factor inhibiting hypoxia inducible factor.
Biochemistry. 2014 Dec 30;53(51):8077-84. doi: 10.1021/bi501246v. Epub 2014 Dec 16.

本文引用的文献

1
Auto-hydroxylation of FIH-1: an Fe(ii), alpha-ketoglutarate-dependent human hypoxia sensor.
Chem Commun (Camb). 2008 Oct 21(39):4768-70. doi: 10.1039/b809099h. Epub 2008 Aug 11.
2
CD and MCD of CytC3 and taurine dioxygenase: role of the facial triad in alpha-KG-dependent oxygenases.
J Am Chem Soc. 2007 Nov 21;129(46):14224-31. doi: 10.1021/ja074557r. Epub 2007 Oct 30.
3
Nickel-specific response in the transcriptional regulator, Escherichia coli NikR.
J Am Chem Soc. 2007 Apr 25;129(16):5085-95. doi: 10.1021/ja068505y. Epub 2007 Mar 31.
6
Human ABH3 structure and key residues for oxidative demethylation to reverse DNA/RNA damage.
EMBO J. 2006 Jul 26;25(14):3389-97. doi: 10.1038/sj.emboj.7601219. Epub 2006 Jul 6.
7
Self-hydroxylation of taurine/alpha-ketoglutarate dioxygenase: evidence for more than one oxygen activation mechanism.
J Biol Inorg Chem. 2006 Jan;11(1):63-72. doi: 10.1007/s00775-005-0059-4. Epub 2005 Dec 1.
8
A five-coordinate metal center in Co(II)-substituted VanX.
J Biol Chem. 2005 Mar 25;280(12):11074-81. doi: 10.1074/jbc.M412582200. Epub 2005 Jan 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验