Chen Yuan-Han, Comeaux Lindsay M, Herbst Robert W, Saban Evren, Kennedy David C, Maroney Michael J, Knapp Michael J
Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA.
J Inorg Biochem. 2008 Dec;102(12):2120-9. doi: 10.1016/j.jinorgbio.2008.07.018. Epub 2008 Aug 8.
Hypoxia sensing is the generic term for pO2-sensing in humans and other higher organisms. These cellular responses to pO2 are largely controlled by enzymes that belong to the Fe(II) alpha-ketoglutarate (alphaKG) dependent dioxygenase superfamily, including the human enzyme called the factor inhibiting HIF (FIH-1), which couples O2-activation to the hydroxylation of the hypoxia inducible factor alpha (HIFalpha). Uncoupled O2-activation by human FIH-1 was studied by exposing the resting form of FIH-1 (alphaKG + Fe)FIH-1, to air in the absence of HIFalpha. Uncoupling lead to two distinct enzyme oxidations, one a purple chromophore (lambda(max) = 583 nm) arising from enzyme auto-hydroxylation of Trp296, forming an Fe(III)-O-Trp296 chromophore [Y.-H. Chen, L.M. Comeaux, S.J. Eyles, M.J. Knapp, Chem. Commun. (2008), doi:10.1039/B809099H]; the other a yellow chromophore due to Fe(III) in the active site, which under some conditions also contained variable levels of an oxygenated surface residue (oxo)Met275. The kinetics of purple FIH-1 formation were independent of Fe(II) and alphaKG concentrations, however, product yield was saturable with increasing [alphaKG] and required excess Fe(II). Yellow FIH-1 was formed from (succinate+Fe)FIH-1, or by glycerol addition to (alphaKG+Fe)FIH-1, suggesting that glycerol could intercept the active oxidant from the FIH-1 active site and prevent hydroxylation. Both purple and yellow FIH-1 contained high-spin, rhombic Fe(III) centers, as shown by low temperature EPR. XAS indicated distorted octahedral Fe(III) geometries, with subtle differences in inner-shell ligands for yellow and purple FIH-1. EPR of Co(II)-substituted FIH-1 (alphaKG + Co)FIH-1, indicated a mixture of 5-coordinate and 6-coordinate enzyme forms, suggesting that resting FIH-1 can readily undergo uncoupled O2-activation by loss of an H2O ligand from the metal center.
缺氧感应是人类和其他高等生物中对氧分压(pO2)进行感应的通用术语。这些细胞对pO2的反应在很大程度上受属于依赖于Fe(II)α-酮戊二酸(αKG)的双加氧酶超家族的酶控制,包括人类的一种名为缺氧诱导因子抑制因子(FIH-1)的酶,它将O2激活与缺氧诱导因子α(HIFα)的羟基化偶联起来。通过将静止形式的FIH-1(αKG + Fe)FIH-1在不存在HIFα的情况下暴露于空气中,研究了人类FIH-1的未偶联O2激活。未偶联导致两种不同的酶氧化,一种是由Trp296的酶自身羟基化产生的紫色发色团(λmax = 583 nm),形成Fe(III)-O-Trp296发色团[陈义华,L.M. 科莫,S.J. 艾尔斯,M.J. 克纳普,《化学通讯》(2008年),doi:10.1039/B809099H];另一种是由于活性位点中的Fe(III)产生的黄色发色团,在某些条件下,其还含有可变水平的氧化表面残基(氧代)Met275。紫色FIH-1形成的动力学与Fe(II)和αKG浓度无关,然而,产物产率随着[αKG]的增加而饱和,并且需要过量的Fe(II)。黄色FIH-1由(琥珀酸 + Fe)FIH-1形成,或者通过向(αKG + Fe)FIH-1中添加甘油形成,这表明甘油可以从FIH-1活性位点截获活性氧化剂并防止羟基化。如低温电子顺磁共振所示,紫色和黄色FIH-1均含有高自旋、菱形的Fe(III)中心。X射线吸收光谱表明Fe(III)的八面体几何结构发生扭曲,黄色和紫色FIH-1在内层配体上存在细微差异。Co(II)取代的FIH-1(αKG + Co)FIH-1的电子顺磁共振表明存在五配位和六配位酶形式的混合物,这表明静止的FIH-1可以通过从金属中心失去一个H2O配体而容易地发生未偶联的O2激活。