Suppr超能文献

辅酶B12依赖的乙醇胺氨裂解酶中Co(II)-底物自由基对催化中间体在190至217K的冷冻水溶液中的反应。

Reaction of the Co(II)-substrate radical pair catalytic intermediate in coenzyme B12-dependent ethanolamine ammonia-lyase in frozen aqueous solution from 190 to 217 K.

作者信息

Zhu Chen, Warncke Kurt

机构信息

Department of Physics, Emory University, Atlanta, Georgia 30322, USA.

出版信息

Biophys J. 2008 Dec 15;95(12):5890-900. doi: 10.1529/biophysj.108.138081. Epub 2008 Sep 19.

Abstract

The decay kinetics of the aminoethanol-generated Co(II)-substrate radical pair catalytic intermediate in ethanolamine ammonia-lyase from Salmonella typhimurium have been measured on timescales of <10(5) s in frozen aqueous solution from 190 to 217 K. X-band continuous-wave electron paramagnetic resonance (EPR) spectroscopy of the disordered samples has been used to continuously monitor the full radical pair EPR spectrum during progress of the decay after temperature step reaction initiation. The decay to a diamagnetic state is complete and no paramagnetic intermediate states are detected. The decay exhibits three kinetic regimes in the measured temperature range, as follows. i), Low temperature range, 190 < or = T < or = 207 K: the decay is biexponential with constant fast (0.57 +/- 0.04) and slow (0.43 +/- 0.04) phase amplitudes. ii), Transition temperature range, 207 < T < 214 K: the amplitude of the slow phase decreases to zero with a compensatory rise in the fast phase amplitude, with increasing temperature. iii), High temperature range, T > or = 214 K: the decay is monoexponential. The observed first-order rate constants for the monoexponential (k(obs,m)) and the fast phase of the biexponential decay (k(obs,f)) adhere to the same linear relation on an lnk versus T(-1) (Arrhenius) plot. Thus, k(obs,m) and k(obs,f) correspond to the same apparent Arrhenius prefactor and activation energy (logA(app,f) (s(-1)) = 13.0, E(a,app,f) = 15.0 kcal/mol), and therefore, a common decay mechanism. We propose that k(obs,m) and k(obs,f) represent the native, forward reaction of the substrate through the radical rearrangement step. The slow phase rate constant (k(obs,s)) for 190 < or = T < or = 207 K obeys a different linear Arrhenius relation (logA(app,s) (s(-1)) = 13.9, E(a,app,s) = 16.6 kcal/mol). In the transition temperature range, k(obs,s) displays a super-Arrhenius increase with increasing temperature. The change in E(a,app,s) with temperature and the narrow range over which it occurs suggest an origin in a liquid/glass or dynamical transition. A discontinuity in the activation barrier for the chemical reaction is not expected in the transition temperature range. Therefore, the transition arises from a change in the properties of the protein. We propose that a protein dynamical contribution to the reaction, which is present above the transition temperature, is lost below the transition temperature, owing to an increase in the activation energy barrier for protein motions that are coupled to the reaction. For both the fast and slow phases of the low temperature decay, the dynamical transition in protein motions that are obligatorily coupled to the reaction of the Co(II)-substrate radical pair lies below 190 K.

摘要

在190至217K的冷冻水溶液中,已在小于10⁵秒的时间尺度上测量了鼠伤寒沙门氏菌乙醇胺氨裂合酶中氨基乙醇生成的Co(II)-底物自由基对催化中间体的衰变动力学。无序样品的X波段连续波电子顺磁共振(EPR)光谱已用于在温度阶跃反应启动后的衰变过程中连续监测整个自由基对EPR光谱。衰变至抗磁状态是完全的,未检测到顺磁中间态。在测量的温度范围内,衰变表现出三种动力学状态,如下所述。i),低温范围,190≤T≤207K:衰变是双指数的,具有恒定的快速(0.57±0.04)和缓慢(0.43±0.04)相振幅。ii),转变温度范围,207<T<214K:随着温度升高,慢相的振幅降至零,快相振幅则相应增加。iii),高温范围,T≥214K:衰变是单指数的。在lnk对T⁻¹(阿仑尼乌斯)图上,单指数衰变的观测一级速率常数(k(obs,m))和双指数衰变的快相(k(obs,f))遵循相同的线性关系。因此,k(obs,m)和k(obs,f)对应于相同的表观阿仑尼乌斯前因子和活化能(logA(app,f)(s⁻¹)=13.0,E(a,app,f)=15.0 kcal/mol),因此具有共同的衰变机制。我们提出k(obs,m)和k(obs,f)代表底物通过自由基重排步骤的天然正向反应。对于190≤T≤207K,慢相速率常数(k(obs,s))遵循不同的线性阿仑尼乌斯关系(logA(app,s)(s⁻¹)=13.9,E(a,app,s)=16.6 kcal/mol)。在转变温度范围内,k(obs,s)随温度升高呈现超阿仑尼乌斯增加。E(a,app,s)随温度的变化及其发生的狭窄范围表明其起源于液体/玻璃或动力学转变。在转变温度范围内,预计化学反应的活化能垒不会出现不连续性。因此,这种转变源于蛋白质性质的变化。我们提出,由于与反应耦合的蛋白质运动的活化能垒增加,在转变温度以上存在的蛋白质动力学对反应的贡献在转变温度以下丧失。对于低温衰变的快相和慢相,与Co(II)-底物自由基对反应强制耦合的蛋白质运动的动力学转变都低于190K。

相似文献

5
Protein Configurational States Guide Radical Rearrangement Catalysis in Ethanolamine Ammonia-Lyase.
Biophys J. 2018 Jun 19;114(12):2775-2786. doi: 10.1016/j.bpj.2018.03.039.
8
Entropic origin of cobalt-carbon bond cleavage catalysis in adenosylcobalamin-dependent ethanolamine ammonia-lyase.
J Am Chem Soc. 2013 Oct 9;135(40):15077-84. doi: 10.1021/ja404467d. Epub 2013 Oct 1.

引用本文的文献

1
Reactivity Tracking of an Enzyme Progress Coordinate.
J Phys Chem Lett. 2023 Aug 17;14(32):7157-7164. doi: 10.1021/acs.jpclett.3c01464. Epub 2023 Aug 4.
6
Protein Configurational States Guide Radical Rearrangement Catalysis in Ethanolamine Ammonia-Lyase.
Biophys J. 2018 Jun 19;114(12):2775-2786. doi: 10.1016/j.bpj.2018.03.039.

本文引用的文献

3
Formation of glasses from liquids and biopolymers.
Science. 1995 Mar 31;267(5206):1924-35. doi: 10.1126/science.267.5206.1924.
4
Connecting nitrogenase intermediates with the kinetic scheme for N2 reduction by a relaxation protocol and identification of the N2 binding state.
Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1451-5. doi: 10.1073/pnas.0610975104. Epub 2007 Jan 24.
8
Divergent mechanisms of suicide inactivation for ethanolamine ammonia-lyase.
J Am Chem Soc. 2005 Jun 22;127(24):8856-64. doi: 10.1021/ja051527k.
9
Chemistry and enzymology of vitamin B12.
Chem Rev. 2005 Jun;105(6):2075-149. doi: 10.1021/cr030720z.
10
A hierarchy of functionally important relaxations within myoglobin based on solvent effects, mutations and kinetic model.
Biochim Biophys Acta. 2005 Jun 1;1749(2):234-51. doi: 10.1016/j.bbapap.2005.04.002. Epub 2005 Apr 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验