Suppr超能文献

在存在背景梯度的情况下用于改善含水量映射的指数激发脉冲。

Exponential excitation pulses for improved water content mapping in the presence of background gradients.

作者信息

Preibisch Christine, Volz Steffen, Anti Sandra, Deichmann Ralf

机构信息

Brain Imaging Center, University of Frankfurt, Frankfurt, Germany.

出版信息

Magn Reson Med. 2008 Oct;60(4):908-16. doi: 10.1002/mrm.21730.

Abstract

Several water content mapping techniques are based on the acquisition of multiple gradient echoes (GE) with different echo times (TE). However, in the presence of linear magnetic field gradients G(susc) the signal decay is no longer exponential but in the case of a rectangular slice profile weighted by a sinc function, giving rise to erroneous initial amplitudes S(0) in monoexponential fitting. Generally, it can be shown that the signal decay is weighted by the time profile of the excitation pulse. Thus, for an excitation pulse with an exponential time profile, i.e., a Lorentzian slice profile, the signal decay remains exponential and exponential fitting still yields the correct amplitude S(0). Multiecho GE images of a gel phantom and five human volunteers were acquired at 3 T using a sinc-shaped and an exponential excitation pulse. In addition, simulations were performed to investigate the influence of saturation effects due to distortion of the ideal Lorentzian slice profile. A considerable overestimation of S(0) when using a sinc-shaped excitation pulse was observed. Errors were greatly reduced with an exponential excitation pulse. We thus propose the use of excitation pulses with exponential time profile to obtain accurate estimates for S(0) from exponential fitting.

摘要

几种含水量映射技术基于采集具有不同回波时间(TE)的多个梯度回波(GE)。然而,在存在线性磁场梯度G(susc)的情况下,信号衰减不再是指数形式,而是在由 sinc 函数加权的矩形切片轮廓的情况下,这会在单指数拟合中产生错误的初始幅度S(0)。一般来说,可以证明信号衰减由激发脉冲的时间轮廓加权。因此,对于具有指数时间轮廓的激发脉冲,即洛伦兹切片轮廓,信号衰减仍然是指数形式,并且指数拟合仍然产生正确的幅度S(0)。使用 sinc 形和指数激发脉冲在 3 T 下采集了凝胶体模和五名人类志愿者的多回波 GE 图像。此外,还进行了模拟以研究由于理想洛伦兹切片轮廓失真导致的饱和效应的影响。观察到使用 sinc 形激发脉冲时S(0)有相当大的高估。使用指数激发脉冲时误差大大降低。因此,我们建议使用具有指数时间轮廓的激发脉冲,以便从指数拟合中获得S(0)的准确估计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验