Suppr超能文献

短盐桥形成α-螺旋的盐特异性稳定性和变性

Salt-specific stability and denaturation of a short salt-bridge-forming alpha-helix.

作者信息

Dzubiella Joachim

机构信息

Physics Department T37, Technical University Munich, 85748 Garching, Germany.

出版信息

J Am Chem Soc. 2008 Oct 22;130(42):14000-7. doi: 10.1021/ja805562g. Epub 2008 Sep 27.

Abstract

The structure of a single alanine-based Ace-AEAAAKEAAAKA-Nme peptide in explicit aqueous electrolyte solutions (NaCl, KCl, NaI, and KF) at large salt concentrations (3-4 M) is investigated using approximately 1 mus molecular dynamics (MD) computer simulations. The peptide displays 71% alpha-helical structure without salt and destabilizes with the addition of NaCl in agreement with experiments of a somewhat longer version. It is mainly stabilized by direct and indirect (" i + 4")EK salt bridges between the Lys and Glu side chains and a concomitant backbone shielding mechanism. NaI is found to be a stronger denaturant than NaCl, while the potassium salts hardly show influence. Investigation of the molecular structures reveals that consistent with recent experiments Na (+) has a much stronger affinity to side chain carboxylates and backbone carbonyls than K (+), thereby weakening salt bridges and secondary structure hydrogen bonds. At the same time, the large I (-) has a considerable affinity to the nonpolar alanine in line with recent observations of a large propensity of I (-) to adsorb to simple hydrophobes, and thereby "assists" Na (+) in its destabilizing action. In the denatured states of the peptide, novel long-lived (10-20 ns) "loop" configurations are observed in which single Na (+) ions and water molecules are hydrogen-bonded to multiple backbone carbonyls. In an attempt to analyze the denaturation behavior within the preferential interaction formalism, we find indeed that for the strongest denaturant, NaI, the protein is least hydrated. Additionally, a possible indication for protein denaturation might be a preferential solvation of the peptide backbone by the destabilizing cosolute (sodium). The mechanisms found in this work may be of general importance to understand salt effects on protein secondary structure stability.

摘要

在高盐浓度(3 - 4 M)的明确水性电解质溶液(NaCl、KCl、NaI和KF)中,使用大约1微秒的分子动力学(MD)计算机模拟研究了单个基于丙氨酸的Ace - AEAAAKEAAAKA - Nme肽的结构。该肽在无盐时显示71%的α - 螺旋结构,并且与稍长版本的实验结果一致,添加NaCl后会使其不稳定。它主要通过赖氨酸和谷氨酸侧链之间的直接和间接(“i + 4”)EK盐桥以及伴随的主链屏蔽机制得以稳定。发现NaI是比NaCl更强的变性剂,而钾盐几乎没有影响。分子结构研究表明,与最近的实验一致,Na⁺对侧链羧酸盐和主链羰基的亲和力比K⁺强得多,从而削弱了盐桥和二级结构氢键。同时,大的I⁻对非极性丙氨酸有相当大的亲和力,这与最近观察到的I⁻吸附到简单疏水物上的强烈倾向一致,因此“协助”Na⁺发挥其去稳定作用。在肽的变性状态下,观察到了新颖的长寿命(10 - 20纳秒)“环”构型,其中单个Na⁺离子和水分子与多个主链羰基形成氢键。为了在优先相互作用形式体系内分析变性行为,我们确实发现,对于最强的变性剂NaI,蛋白质的水合程度最低。此外,蛋白质变性的一个可能迹象可能是肽主链被去稳定共溶质(钠)优先溶剂化。这项工作中发现的机制对于理解盐对蛋白质二级结构稳定性的影响可能具有普遍重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验