Suppr超能文献

边缘准周期梯度系统中的非混沌停滞运动。

Nonchaotic stagnant motion in a marginal quasiperiodic gradient system.

作者信息

Mitsui Takahito

机构信息

Department of Applied Physics, Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Aug;78(2 Pt 2):026206. doi: 10.1103/PhysRevE.78.026206. Epub 2008 Aug 15.

Abstract

A one-dimensional dynamical system with a marginal quasiperiodic gradient is presented as a mathematical extension of a nonuniform oscillator. The system exhibits a nonchaotic stagnant motion, which is reminiscent of intermittent chaos. In fact, the density function of residence times near stagnation points obeys an inverse-square law, due to a mechanism similar to type-I intermittency. However, unlike intermittent chaos, in which the alternation between long stagnant phases and rapid moving phases occurs in a random manner, here the alternation occurs in a quasiperiodic manner. In particular, in the case of a gradient with the golden ratio, the renewal of the largest residence time occurs at positions corresponding to the Fibonacci sequence. Finally, the asymptotic long-time behavior, in the form of a nested logarithm, is theoretically derived. Compared with the Pomeau-Manneville intermittency, a significant difference in the relaxation property of the long-time average of the dynamical variable is found.

摘要

提出了一种具有边缘准周期梯度的一维动力系统,作为非均匀振荡器的数学扩展。该系统表现出非混沌停滞运动,这让人联想到间歇混沌。事实上,由于一种类似于I型间歇性的机制,停滞点附近停留时间的密度函数服从反平方定律。然而,与间歇混沌不同,在间歇混沌中,长停滞阶段和快速移动阶段之间的交替以随机方式发生,而这里的交替以准周期方式发生。特别是,在具有黄金比例梯度的情况下,最大停留时间的更新发生在与斐波那契数列对应的位置。最后,从理论上推导出了以嵌套对数形式表示的渐近长时间行为。与庞加莱 - 曼内维尔间歇性相比,发现动力变量长时间平均值的弛豫特性存在显著差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验