Suppr超能文献

碱性磷酸酶超家族中的比较酶学,以确定活性位点金属离子的催化作用。

Comparative enzymology in the alkaline phosphatase superfamily to determine the catalytic role of an active-site metal ion.

作者信息

Zalatan Jesse G, Fenn Timothy D, Herschlag Daniel

机构信息

Department of Chemistry, Stanford University, Beckman Center B400, Stanford, CA 94305, USA.

出版信息

J Mol Biol. 2008 Dec 31;384(5):1174-89. doi: 10.1016/j.jmb.2008.09.059. Epub 2008 Oct 2.

Abstract

Mechanistic models for biochemical systems are frequently proposed from structural data. Site-directed mutagenesis can be used to test the importance of proposed functional sites, but these data do not necessarily indicate how these sites contribute to function. In this study, we applied an alternative approach to the catalytic mechanism of alkaline phosphatase (AP), a widely studied prototypical bimetallo enzyme. A third metal ion site in AP has been suggested to provide general base catalysis, but comparison of AP with an evolutionarily related enzyme casts doubt on this model. Removal of this metal site from AP has large differential effects on reactions of cognate and promiscuous substrates, and the results are inconsistent with general base catalysis. Instead, these and additional results suggest that the third metal ion stabilizes the transferred phosphoryl group in the transition state. These results establish a new mechanistic model for this prototypical bimetallo enzyme and demonstrate the power of a comparative approach for probing biochemical function.

摘要

生化系统的机理模型常常是根据结构数据提出的。定点诱变可用于测试所提出的功能位点的重要性,但这些数据不一定能表明这些位点是如何对功能产生作用的。在本研究中,我们对碱性磷酸酶(AP)的催化机制采用了另一种方法,碱性磷酸酶是一种经过广泛研究的典型双金属酶。有人提出AP中的第三个金属离子位点可提供一般碱催化作用,但将AP与一种进化相关酶进行比较后,对该模型产生了质疑。从AP中去除这个金属位点对同源底物和混杂底物的反应有很大的差异影响,且结果与一般碱催化作用不一致。相反,这些以及其他结果表明,第三个金属离子在过渡态稳定转移的磷酰基。这些结果为这种典型双金属酶建立了一个新的机理模型,并证明了比较方法在探究生化功能方面的作用。

相似文献

1
Comparative enzymology in the alkaline phosphatase superfamily to determine the catalytic role of an active-site metal ion.
J Mol Biol. 2008 Dec 31;384(5):1174-89. doi: 10.1016/j.jmb.2008.09.059. Epub 2008 Oct 2.
3
High-resolution analysis of Zn(2+) coordination in the alkaline phosphatase superfamily by EXAFS and x-ray crystallography.
J Mol Biol. 2012 Jan 6;415(1):102-17. doi: 10.1016/j.jmb.2011.10.040. Epub 2011 Oct 28.
7
Probing the origin of the compromised catalysis of E. coli alkaline phosphatase in its promiscuous sulfatase reaction.
J Am Chem Soc. 2007 May 2;129(17):5760-5. doi: 10.1021/ja069111+. Epub 2007 Apr 6.
8
A revised mechanism for the alkaline phosphatase reaction involving three metal ions.
J Mol Biol. 2000 Jun 23;299(5):1303-11. doi: 10.1006/jmbi.2000.3799.
9
Kinetic isotope effects for alkaline phosphatase reactions: implications for the role of active-site metal ions in catalysis.
J Am Chem Soc. 2007 Aug 8;129(31):9789-98. doi: 10.1021/ja072196+. Epub 2007 Jul 14.
10
Alkaline phosphatase revisited: hydrolysis of alkyl phosphates.
Biochemistry. 2002 Mar 5;41(9):3207-25. doi: 10.1021/bi012166y.

引用本文的文献

1
Structural insights into manganese-dependent arylsulfatase from and its catalytic promiscuity.
mBio. 2025 Sep 10;16(9):e0003125. doi: 10.1128/mbio.00031-25. Epub 2025 Aug 8.
2
Molecular Basis for Cγ-N Bond Formation by PLP-Dependent Enzyme LolC.
Biochemistry. 2024 Dec 17;63(24):3348-3356. doi: 10.1021/acs.biochem.4c00588. Epub 2024 Dec 6.
3
Copper-flavonoid family of complexes involved in alkaline phosphatase activation.
Biometals. 2023 Dec;36(6):1221-1239. doi: 10.1007/s10534-023-00511-y. Epub 2023 May 31.
6
N enrichment affects the arbuscular mycorrhizal fungi-mediated relationship between a C4 grass and a legume.
Plant Physiol. 2021 Nov 3;187(3):1519-1533. doi: 10.1093/plphys/kiab328.
7
Revealing enzyme functional architecture via high-throughput microfluidic enzyme kinetics.
Science. 2021 Jul 23;373(6553). doi: 10.1126/science.abf8761.
8
Dual-Selective Catalysis in Dephosphorylation Tuned by Hf-Containing Metal-Organic Frameworks Mimicking Phosphatase.
ACS Cent Sci. 2021 May 26;7(5):831-840. doi: 10.1021/acscentsci.0c01581. Epub 2021 May 7.
10
A Novel Alkaline Phosphatase/Phosphodiesterase, CamPhoD, from Marine Bacterium KMM 296.
Mar Drugs. 2019 Nov 22;17(12):657. doi: 10.3390/md17120657.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
4
Crystal structure of a self-spliced group II intron.
Science. 2008 Apr 4;320(5872):77-82. doi: 10.1126/science.1153803.
5
Kinetic isotope effects for alkaline phosphatase reactions: implications for the role of active-site metal ions in catalysis.
J Am Chem Soc. 2007 Aug 8;129(31):9789-98. doi: 10.1021/ja072196+. Epub 2007 Jul 14.
6
Probing the origin of the compromised catalysis of E. coli alkaline phosphatase in its promiscuous sulfatase reaction.
J Am Chem Soc. 2007 May 2;129(17):5760-5. doi: 10.1021/ja069111+. Epub 2007 Apr 6.
7
Crystal structure of alkaline phosphatase from the Antarctic bacterium TAB5.
J Mol Biol. 2007 Mar 2;366(4):1318-31. doi: 10.1016/j.jmb.2006.11.079. Epub 2006 Dec 2.
8
Phosphate recognition in structural biology.
Angew Chem Int Ed Engl. 2007;46(3):338-52. doi: 10.1002/anie.200603420.
10
Enzyme promiscuity: evolutionary and mechanistic aspects.
Curr Opin Chem Biol. 2006 Oct;10(5):498-508. doi: 10.1016/j.cbpa.2006.08.011. Epub 2006 Aug 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验