Humphrey Joseph A C
Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, USA.
J R Soc Interface. 2009 Jul 6;6(36):641-53. doi: 10.1098/rsif.2008.0293. Epub 2008 Oct 16.
In Part I of this two-part study, the coupled flows external and internal to the fish lateral line trunk canal were consecutively calculated by solving the Navier-Stokes (N-S) equations numerically in each domain. With the external flow known, the solution for the internal flow was obtained using a parallelepiped to simulate the neuromast cupula present between a pair of consecutive pores, allowing the calculation of the drag force acting on the neuromast cupula. While physically rigorous and accurate, the numerical approach is tedious and inefficient since it does not readily reveal the parameter dependencies of the drag force. In Part II of this work we present an analytically based physical-mathematical model for rapidly calculating the drag force acting on a neuromast cupula. The cupula is well approximated as an immobile sphere located inside a tube-shaped canal segment of circular cross section containing a constant property fluid in a steady-periodic oscillating state of motion. The analytical expression derived for the dimensionless drag force is of the form |F(N)/(|P(L) - P(R)|pi(D/2)(2) = f(d/D, L(t)/D, omega()(D), where |F(N)| is the amplitude of the drag force; |P(L)-P(R)| is the amplitude of the pressure difference driving the flow in the interpore tube segment; d/D is the ratio of sphere diameter to tube diameter; L(t)/D is the ratio of interpore tube segment length to tube diameter; and omega()(D) = omega(D/2)(2) /v is the oscillating flow kinetic Reynolds number (a dimensionless frequency). Present results show that the dimensionless drag force amplitude increases with decreasing L(t)/D and maximizes in the range 0.65< or =d/D< or =0.85, depending on the values of L(t)/D and omega()(D). It is also found that in the biologically relevant range of dimensionless frequencies 1< or = omega()(D) < or =20 and segment lengths 4< or =L(t)/D< or =16, the sphere tube (neuromast-canal) system acts as a low-pass filter for values d/D< or =0.75, approximately. For larger values of d/D the system is equally sensitive to all frequencies, but the drag force is significantly decreased. Comparisons with N-S calculations of the drag force show good agreement with the analytical model results. By revealing the parameter dependencies of the drag force, the model serves to guide biological understanding and the optimized design of corresponding bioinspired artificial sensors.
在这项分为两部分的研究的第一部分中,通过在每个区域数值求解纳维 - 斯托克斯(N - S)方程,依次计算了鱼侧线主干管外部和内部的耦合流动。已知外部流动后,使用平行六面体来模拟一对连续孔隙之间存在的神经丘杯状体,从而获得内部流动的解,进而计算作用在神经丘杯状体上的阻力。虽然数值方法在物理上严谨且准确,但它繁琐且低效,因为它不能轻易揭示阻力的参数依赖性。在这项工作的第二部分,我们提出了一个基于解析的物理 - 数学模型,用于快速计算作用在神经丘杯状体上的阻力。杯状体可以很好地近似为一个固定在圆形横截面的管状通道段内的球体,该通道段内含有处于稳定周期振荡运动状态的具有恒定属性的流体。推导得到的无量纲阻力的解析表达式形式为|F(N)/(|P(L) - P(R)|π(D/2)(2) = f(d/D, L(t)/D, ω*(D),其中|F(N)|是阻力的幅值;|P(L) - P(R)|是驱动孔隙间管段内流动的压力差的幅值;d/D是球体直径与管道直径的比值;L(t)/D是孔隙间管段长度与管道直径的比值;ω*(D) = ω(D/2)(2) /v是振荡流动的动力学雷诺数(一个无量纲频率)。目前的结果表明,无量纲阻力幅值随着L(t)/D的减小而增加,并在0.65≤d/D≤0.85范围内达到最大值,这取决于L(t)/D和ω*(D)的值。还发现,在无量纲频率1≤ω*(D)≤20以及段长4≤L(t)/D≤16这个生物学相关范围内,球体 - 管道(神经丘 - 通道)系统对于d/D≤0.75的值大致起到低通滤波器的作用。对于较大的d/D值,该系统对所有频率同样敏感,但阻力会显著降低。与阻力的N - S计算结果的比较表明,与解析模型结果吻合良好。通过揭示阻力的参数依赖性,该模型有助于指导生物学理解以及相应生物启发式人工传感器的优化设计。