Suppr超能文献

通过模拟图像采集自动构建三维主动形状模型强度模型:在心肌门控单光子发射计算机断层显像研究中的应用

Automatic construction of 3D-ASM intensity models by simulating image acquisition: application to myocardial gated SPECT studies.

作者信息

Tobon-Gomez Catalina, Butakoff Constantine, Aguade Santiago, Sukno Federico, Moragas Gloria, Frangi Alejandro F

机构信息

Center for Computational Imaging and Simulation Technologies in Biomedicine, Universitat Pompeu Fabra, Barcelona 08003, Spain.

出版信息

IEEE Trans Med Imaging. 2008 Nov;27(11):1655-67. doi: 10.1109/TMI.2008.2004819.

Abstract

Active shape models bear a great promise for model-based medical image analysis. Their practical use, though, is undermined due to the need to train such models on large image databases. Automatic building of point distribution models (PDMs) has been successfully addressed and a number of autolandmarking techniques are currently available. However, the need for strategies to automatically build intensity models around each landmark has been largely overlooked in the literature. This work demonstrates the potential of creating intensity models automatically by simulating image generation. We show that it is possible to reuse a 3D PDM built from computed tomography (CT) to segment gated single photon emission computed tomography (gSPECT) studies. Training is performed on a realistic virtual population where image acquisition and formation have been modeled using the SIMIND Monte Carlo simulator and ASPIRE image reconstruction software, respectively. The dataset comprised 208 digital phantoms (4D-NCAT) and 20 clinical studies. The evaluation is accomplished by comparing point-to-surface and volume errors against a proper gold standard. Results show that gSPECT studies can be successfully segmented by models trained under this scheme with subvoxel accuracy. The accuracy in estimated LV function parameters, such as end diastolic volume, end systolic volume, and ejection fraction, ranged from 90.0% to 94.5% for the virtual population and from 87.0% to 89.5% for the clinical population.

摘要

主动形状模型在基于模型的医学图像分析方面有着巨大的前景。然而,由于需要在大型图像数据库上训练此类模型,其实际应用受到了影响。点分布模型(PDM)的自动构建已得到成功解决,目前有多种自动地标技术可用。然而,文献中很大程度上忽略了围绕每个地标自动构建强度模型的策略需求。这项工作展示了通过模拟图像生成自动创建强度模型的潜力。我们表明,可以重用从计算机断层扫描(CT)构建的三维PDM来分割门控单光子发射计算机断层扫描(gSPECT)研究。在一个真实的虚拟人群上进行训练,其中分别使用SIMIND蒙特卡罗模拟器和ASPIRE图像重建软件对图像采集和形成进行建模。数据集包括208个数字体模(4D-NCAT)和20项临床研究。通过将点到表面和体积误差与合适的金标准进行比较来完成评估。结果表明,通过在此方案下训练的模型可以成功分割gSPECT研究,具有亚体素精度。对于虚拟人群,估计的左心室功能参数(如舒张末期容积、收缩末期容积和射血分数)的准确率在90.0%至94.5%之间,对于临床人群,准确率在87.0%至89.5%之间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验