Suppr超能文献

通过归纳逻辑编程识别肿瘤演变模式。

Identification of tumor evolution patterns by means of inductive logic programming.

作者信息

Bevilacqua Vitoantonio, Chiarappa Patrizia, Mastronardi Giuseppe, Menolascina Filippo, Paradiso Angelo, Tommasi Stefania

机构信息

Polytechnic of Bari, 70125 Bari, Italy.

出版信息

Genomics Proteomics Bioinformatics. 2008 Jun;6(2):91-7. doi: 10.1016/S1672-0229(08)60024-8.

Abstract

In considering key events of genomic disorders in the development and progression of cancer, the correlation between genomic instability and carcinogenesis is currently under investigation. In this work, we propose an inductive logic programming approach to the problem of modeling evolution patterns for breast cancer. Using this approach, it is possible to extract fingerprints of stages of the disease that can be used in order to develop and deliver the most adequate therapies to patients. Furthermore, such a model can help physicians and biologists in the elucidation of molecular dynamics underlying the aberrations-waterfall model behind carcinogenesis. By showing results obtained on a real-world dataset, we try to give some hints about further approach to the knowledge-driven validations of such hypotheses.

摘要

在考虑基因组疾病在癌症发生和发展中的关键事件时,基因组不稳定性与致癌作用之间的相关性目前正在研究中。在这项工作中,我们针对乳腺癌演变模式建模问题提出了一种归纳逻辑编程方法。使用这种方法,可以提取疾病阶段的特征,这些特征可用于为患者开发和提供最适当的治疗方法。此外,这样的模型可以帮助医生和生物学家阐明致癌作用背后的畸变瀑布模型所依据的分子动力学。通过展示在真实世界数据集上获得的结果,我们试图对这种假设的知识驱动验证的进一步方法给出一些提示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1e2/5054107/f38d23148b04/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验