Suppr超能文献

Real-time nonlinear FEM with neural network for simulating soft organ model deformation.

作者信息

Morooka Ken'ichi, Chen Xian, Kurazume Ryo, Uchida Seiichi, Hara Kenji, Iwashita Yumi, Hashizume Makoto

机构信息

Digital Medicine Initiative, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan.

出版信息

Med Image Comput Comput Assist Interv. 2008;11(Pt 2):742-9. doi: 10.1007/978-3-540-85990-1_89.

Abstract

This paper presents a new method for simulating the deformation of organ models by using a neural network. The proposed method is based on the idea proposed by Chen et al. that a deformed model can be estimated from the superposition of basic deformation modes. The neural network finds a relationship between external forces and the models deformed by the forces. The experimental results show that the trained network can achieve a real-time simulation while keeping the acceptable accuracy compared with the nonlinear FEM computation.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验