Suppr超能文献

利用抑郁症临床试验的纵向数据评估其结果量表的可靠性。

Using longitudinal data from a clinical trial in depression to assess the reliability of its outcome scales.

作者信息

Laenen Annouschka, Alonso Ariel, Molenberghs Geert, Vangeneugden Tony, Mallinckrodt Craig H

机构信息

Hasselt University, Center for Statistics, Agoralaan 1, B3590 Diepenbeek, Belgium.

出版信息

J Psychiatr Res. 2009 Apr;43(7):730-8. doi: 10.1016/j.jpsychires.2008.09.010. Epub 2008 Nov 4.

Abstract

Longitudinal studies are permeating clinical trials in psychiatry. Additionally, in the same field, rating scales are frequently used to evaluate the status of the patients and the efficacy of new therapeutic procedures. Therefore, it is of utmost importance to study the psychometric properties of these instruments within a longitudinal framework. In the area of depression, the Hamilton depression rating scale (HAMD) is regularly used for antidepressant treatment evaluation. However, the use of HAMD has not been exempted from criticism what has lead to the development of new scales that are expected to be more sensitive for change, such as the Montgomery-Asberg depression rating scale (MADRS). In general, the reliability of these scales has been extensively studied by using classical methods for reliability estimation, developed for specifically designed reliability studies. Unfortunately, the settings customarily considered in these reliability studies are usually far from the practical conditions in which these scales are applied in clinical trials and practice. In the present paper, we assess the reliability of these instruments in a more realistic scenario thereby using longitudinal data coming from clinical studies. Nowadays, newly developed methodology based on an extended concept of reliability, allows us to use longitudinal data for reliability estimation. This new approach not only enables to avoid bias by offering a better control of disturbing factors but it also produces more precise estimates by taking advantage of the large sample taking sizes available in clinical trials. Further, it offers practical guidelines for an optimal use of a rating scale in order to achieve a particular level of reliability. The merits of this new approach are illustrated by applying it on two clinical trials in depression to assess the reliability of the three outcome scales, HAMD, MADRS, and the Hamilton anxiety rating scale (HAMA).

摘要

纵向研究正在渗透到精神病学的临床试验中。此外,在同一领域,评定量表经常用于评估患者的状况和新治疗程序的疗效。因此,在纵向框架内研究这些工具的心理测量特性至关重要。在抑郁症领域,汉密尔顿抑郁评定量表(HAMD)经常用于抗抑郁治疗评估。然而,HAMD的使用也并非没有受到批评,这导致了新量表的开发,预计这些新量表对变化更敏感,比如蒙哥马利-阿斯伯格抑郁评定量表(MADRS)。一般来说,这些量表的信度已经通过使用为专门设计的信度研究开发的经典信度估计方法进行了广泛研究。不幸的是,这些信度研究通常考虑的设定与这些量表在临床试验和实践中的实际应用条件相差甚远。在本文中,我们在更现实的场景中评估这些工具的信度,从而使用来自临床研究的纵向数据。如今,基于扩展信度概念的新开发方法使我们能够使用纵向数据进行信度估计。这种新方法不仅通过更好地控制干扰因素避免偏差,还通过利用临床试验中可用的大样本量产生更精确的估计。此外,它为评定量表的最佳使用提供了实用指南,以达到特定的信度水平。通过将这种新方法应用于两项抑郁症临床试验来评估三个结果量表HAMD、MADRS和汉密尔顿焦虑评定量表(HAMA)的信度,说明了这种新方法的优点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验