Hsu Chiu-Hsieh, Taylor Jeremy M G
Division of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA.
Stat Med. 2009 Feb 1;28(3):462-75. doi: 10.1002/sim.3480.
When the event time of interest depends on the censoring time, conventional two-sample test methods, such as the log-rank and Wilcoxon tests, can produce an invalid test result. We extend our previous work on estimation using auxiliary variables to adjust for dependent censoring via multiple imputation, to the comparison of two survival distributions. To conduct the imputation, we use two working models to define a set of similar observations called the imputing risk set. One model is for the event times and the other for the censoring times. Based on the imputing risk set, a nonparametric multiple imputation method, Kaplan-Meier imputation, is used to impute a future event or censoring time for each censored observation. After imputation, the conventional nonparametric two-sample tests can be easily implemented on the augmented data sets. Simulation studies show that the sizes of the log-rank and Wilcoxon tests constructed on the imputed data sets are comparable to the nominal level and the powers are much higher compared with the tests based on the unimputed data in the presence of dependent censoring if either one of the two working models is correctly specified. The method is illustrated using AIDS clinical trial data comparing ZDV and placebo, in which CD4 count is the time-dependent auxiliary variable.
当感兴趣的事件时间取决于删失时间时,传统的两样本检验方法,如对数秩检验和威尔科克森检验,可能会产生无效的检验结果。我们将之前关于使用辅助变量进行估计以通过多重填补调整相依删失的工作扩展到两个生存分布的比较。为了进行填补,我们使用两个工作模型来定义一组称为填补风险集的相似观测值。一个模型用于事件时间,另一个用于删失时间。基于填补风险集,使用一种非参数多重填补方法,即卡普兰-迈耶填补,为每个删失观测值填补未来事件或删失时间。填补后,可以在扩充数据集上轻松实施传统的非参数两样本检验。模拟研究表明,如果两个工作模型中的任何一个被正确指定,在存在相依删失的情况下,基于填补数据集构建的对数秩检验和威尔科克森检验的大小与名义水平相当,并且功效比基于未填补数据的检验高得多。使用比较齐多夫定和安慰剂的艾滋病临床试验数据说明了该方法,其中CD4计数是随时间变化的辅助变量。