Suppr超能文献

通过扫描透射X射线显微镜对工作催化剂进行纳米级化学成像。

Nanoscale chemical imaging of a working catalyst by scanning transmission X-ray microscopy.

作者信息

de Smit Emiel, Swart Ingmar, Creemer J Fredrik, Hoveling Gerard H, Gilles Mary K, Tyliszczak Tolek, Kooyman Patricia J, Zandbergen Henny W, Morin Cynthia, Weckhuysen Bert M, de Groot Frank M F

机构信息

Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands.

出版信息

Nature. 2008 Nov 13;456(7219):222-5. doi: 10.1038/nature07516.

Abstract

The modern chemical industry uses heterogeneous catalysts in almost every production process. They commonly consist of nanometre-size active components (typically metals or metal oxides) dispersed on a high-surface-area solid support, with performance depending on the catalysts' nanometre-size features and on interactions involving the active components, the support and the reactant and product molecules. To gain insight into the mechanisms of heterogeneous catalysts, which could guide the design of improved or novel catalysts, it is thus necessary to have a detailed characterization of the physicochemical composition of heterogeneous catalysts in their working state at the nanometre scale. Scanning probe microscopy methods have been used to study inorganic catalyst phases at subnanometre resolution, but detailed chemical information of the materials in their working state is often difficult to obtain. By contrast, optical microspectroscopic approaches offer much flexibility for in situ chemical characterization; however, this comes at the expense of limited spatial resolution. A recent development promising high spatial resolution and chemical characterization capabilities is scanning transmission X-ray microscopy, which has been used in a proof-of-principle study to characterize a solid catalyst. Here we show that when adapting a nanoreactor specially designed for high-resolution electron microscopy, scanning transmission X-ray microscopy can be used at atmospheric pressure and up to 350 degrees C to monitor in situ phase changes in a complex iron-based Fisher-Tropsch catalyst and the nature and location of carbon species produced. We expect that our system, which is capable of operating up to 500 degrees C, will open new opportunities for nanometre-resolution imaging of a range of important chemical processes taking place on solids in gaseous or liquid environments.

摘要

现代化学工业几乎在每个生产过程中都使用多相催化剂。它们通常由分散在高比表面积固体载体上的纳米级活性组分(通常是金属或金属氧化物)组成,其性能取决于催化剂的纳米尺寸特征以及涉及活性组分、载体与反应物和产物分子的相互作用。为了深入了解多相催化剂的作用机制,以指导改进型或新型催化剂的设计,因此有必要在纳米尺度上对处于工作状态的多相催化剂的物理化学组成进行详细表征。扫描探针显微镜方法已被用于研究亚纳米分辨率下的无机催化剂相,但通常难以获得处于工作状态的材料的详细化学信息。相比之下,光学显微光谱方法为原位化学表征提供了更大的灵活性;然而,这是以有限的空间分辨率为代价的。扫描透射X射线显微镜是一项近期发展起来的技术,具有高空间分辨率和化学表征能力,已在一项原理验证研究中用于表征固体催化剂。在此我们表明,当采用专门为高分辨率电子显微镜设计的纳米反应器时,扫描透射X射线显微镜可在大气压和高达350摄氏度的条件下用于原位监测复杂铁基费托合成催化剂中的相变以及所产生碳物种的性质和位置。我们预计,我们的系统能够在高达500摄氏度的条件下运行,这将为气态或液态环境中固体上发生的一系列重要化学过程的纳米级分辨率成像带来新机遇。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验