Nacher J C, Hayashida M, Akutsu T
Department of Complex Systems, Future University-Hakodate, 116-2 Kamedanakano-cho Hakodate, Hokkaido 041-8655, Japan.
Biosystems. 2009 Feb;95(2):155-9. doi: 10.1016/j.biosystems.2008.10.002. Epub 2008 Nov 1.
Recent analyses of biological and artificial networks have revealed a common network architecture, called scale-free topology. The origin of the scale-free topology has been explained by using growth and preferential attachment mechanisms. In a cell, proteins are the most important carriers of function, and are composed of domains as elemental units responsible for the physical interaction between protein pairs. Here, we propose a model for protein-protein interaction networks that reveals the emergence of two possible topologies. We show that depending on the number of randomly selected interacting domain pairs, the connectivity distribution follows either a scale-free distribution, even in the absence of the preferential attachment, or a normal distribution. This new approach only requires an evolutionary model of proteins (nodes) but not for the interactions (edges). The edges are added by means of random interaction of domain pairs. As a result, this model offers a new mechanistic explanation for understanding complex networks with a direct biological interpretation because only protein structures and their functions evolved through genetic modifications of amino acid sequences. These findings are supported by numerical simulations as well as experimental data.
近期对生物网络和人工网络的分析揭示了一种常见的网络架构,即无标度拓扑结构。无标度拓扑结构的起源已通过增长和优先连接机制得到解释。在细胞中,蛋白质是功能的最重要载体,由结构域作为负责蛋白质对之间物理相互作用的基本单元组成。在此,我们提出了一个蛋白质 - 蛋白质相互作用网络模型,该模型揭示了两种可能拓扑结构的出现。我们表明,根据随机选择的相互作用结构域对的数量,即使在没有优先连接的情况下,连接性分布要么遵循无标度分布,要么遵循正态分布。这种新方法仅需要蛋白质(节点)的进化模型,而不需要相互作用(边)的进化模型。边是通过结构域对的随机相互作用添加的。因此,该模型为理解具有直接生物学解释的复杂网络提供了一种新的机制解释,因为只有蛋白质结构及其功能是通过氨基酸序列的基因修饰进化而来的。这些发现得到了数值模拟以及实验数据的支持。