Wise David R, DeBerardinis Ralph J, Mancuso Anthony, Sayed Nabil, Zhang Xiao-Yong, Pfeiffer Harla K, Nissim Ilana, Daikhin Evgueni, Yudkoff Marc, McMahon Steven B, Thompson Craig B
Department of Cancer Biology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104-6160, USA.
Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18782-7. doi: 10.1073/pnas.0810199105. Epub 2008 Nov 24.
Mammalian cells fuel their growth and proliferation through the catabolism of two main substrates: glucose and glutamine. Most of the remaining metabolites taken up by proliferating cells are not catabolized, but instead are used as building blocks during anabolic macromolecular synthesis. Investigations of phosphoinositol 3-kinase (PI3K) and its downstream effector AKT have confirmed that these oncogenes play a direct role in stimulating glucose uptake and metabolism, rendering the transformed cell addicted to glucose for the maintenance of survival. In contrast, less is known about the regulation of glutamine uptake and metabolism. Here, we report that the transcriptional regulatory properties of the oncogene Myc coordinate the expression of genes necessary for cells to engage in glutamine catabolism that exceeds the cellular requirement for protein and nucleotide biosynthesis. A consequence of this Myc-dependent glutaminolysis is the reprogramming of mitochondrial metabolism to depend on glutamine catabolism to sustain cellular viability and TCA cycle anapleurosis. The ability of Myc-expressing cells to engage in glutaminolysis does not depend on concomitant activation of PI3K or AKT. The stimulation of mitochondrial glutamine metabolism resulted in reduced glucose carbon entering the TCA cycle and a decreased contribution of glucose to the mitochondrial-dependent synthesis of phospholipids. These data suggest that oncogenic levels of Myc induce a transcriptional program that promotes glutaminolysis and triggers cellular addiction to glutamine as a bioenergetic substrate.
哺乳动物细胞通过两种主要底物(葡萄糖和谷氨酰胺)的分解代谢来为其生长和增殖提供能量。增殖细胞摄取的其余大多数代谢物不会被分解代谢,而是在合成代谢的大分子合成过程中用作构建模块。对磷酸肌醇3激酶(PI3K)及其下游效应器AKT的研究证实,这些癌基因在刺激葡萄糖摄取和代谢中起直接作用,使转化细胞对葡萄糖产生依赖以维持生存。相比之下,关于谷氨酰胺摄取和代谢的调节了解较少。在此,我们报告癌基因Myc的转录调控特性协调了细胞进行谷氨酰胺分解代谢所需基因的表达,这种分解代谢超过了细胞对蛋白质和核苷酸生物合成的需求。这种Myc依赖性谷氨酰胺分解代谢的一个结果是线粒体代谢重编程,使其依赖谷氨酰胺分解代谢来维持细胞活力和三羧酸循环(TCA循环)的回补反应。表达Myc的细胞进行谷氨酰胺分解代谢的能力不依赖于PI3K或AKT的同时激活。线粒体谷氨酰胺代谢的刺激导致进入TCA循环的葡萄糖碳减少,以及葡萄糖对线粒体依赖性磷脂合成的贡献降低。这些数据表明,癌基因水平的Myc诱导了一个转录程序,该程序促进谷氨酰胺分解代谢并引发细胞对谷氨酰胺作为生物能量底物的依赖。