Suppr超能文献

使用分裂型绿色荧光蛋白系统进行蛋白质溶解度筛选的自动化高通量平台。

Automated, high-throughput platform for protein solubility screening using a split-GFP system.

作者信息

Listwan Pawel, Terwilliger Thomas C, Waldo Geoffrey S

机构信息

Bioscience Division, MS-M888, Los Alamos National Laboratory, Bikini Atoll Rd, SM30, Los Alamos, NM 87545, USA.

出版信息

J Struct Funct Genomics. 2009 Mar;10(1):47-55. doi: 10.1007/s10969-008-9049-4. Epub 2008 Nov 28.

Abstract

Overproduction of soluble and stable proteins for functional and structural studies is a major bottleneck for structural genomics programs and traditional biochemistry laboratories. Many high-payoff proteins that are important in various biological processes are "difficult to handle" as protein reagents in their native form. We have recently made several advances in enabling biochemical technologies for improving protein stability (http://www.lanl.gov/projects/gfp/), allowing stratagems for efficient protein domain trapping, solubility-improving mutations, and finding protein folding partners. In particular split-GFP protein tags are a very powerful tool for detection of stable protein domains. Soluble, stable proteins tagged with the 15 amino acid GFP fragment (amino acids 216-228) can be detected in vivo and in vitro using the engineered GFP 1-10 "detector" fragment (amino acids 1-215). If the small tag is accessible, the detector fragment spontaneously binds resulting in fluorescence. Here, we describe our current and on-going efforts to move this process from the bench (manual sample manipulation) to an automated, high-throughput, liquid-handling platform. We discuss optimization and validation of bacterial culture growth, lysis protocols, protein extraction, and assays of soluble and insoluble protein in multiple 96 well plate format. The optimized liquid-handling protocol can be used for rapid determination of the optimal, compact domains from single ORFS, collections of ORFS, or cDNA libraries.

摘要

生产用于功能和结构研究的可溶性稳定蛋白质,是结构基因组学计划和传统生物化学实验室面临的主要瓶颈。许多在各种生物过程中起重要作用的高价值蛋白质,以其天然形式作为蛋白质试剂“难以处理”。我们最近在改进蛋白质稳定性的生化技术方面取得了多项进展(http://www.lanl.gov/projects/gfp/),开发了高效捕获蛋白质结构域、改善溶解性突变以及寻找蛋白质折叠伴侣的策略。特别是分裂型绿色荧光蛋白(split-GFP)标签,是检测稳定蛋白质结构域的强大工具。用15个氨基酸的绿色荧光蛋白片段(氨基酸216 - 228)标记的可溶性稳定蛋白质,可使用工程化的绿色荧光蛋白1 - 10“检测”片段(氨基酸1 - 215)在体内和体外进行检测。如果小标签可及,检测片段会自发结合并产生荧光。在此,我们描述了将这一过程从实验台(手动样品操作)转移到自动化、高通量液体处理平台的当前及正在进行的工作。我们讨论了在多个96孔板形式下细菌培养生长、裂解方案、蛋白质提取以及可溶性和不溶性蛋白质检测的优化与验证。优化后的液体处理方案可用于从单个开放阅读框(ORF)、ORF集合或cDNA文库中快速确定最佳紧凑结构域。

相似文献

1
Automated, high-throughput platform for protein solubility screening using a split-GFP system.
J Struct Funct Genomics. 2009 Mar;10(1):47-55. doi: 10.1007/s10969-008-9049-4. Epub 2008 Nov 28.
2
In vivo and in vitro protein solubility assays using split GFP.
Nat Methods. 2006 Oct;3(10):845-54. doi: 10.1038/nmeth932.
3
High-Throughput Isolation of Soluble Protein Domains Using a Bipartite Split-GFP Complementation System.
Methods Mol Biol. 2019;2025:321-333. doi: 10.1007/978-1-4939-9624-7_15.
4
Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein.
Nat Biotechnol. 2005 Jan;23(1):102-7. doi: 10.1038/nbt1044. Epub 2004 Dec 5.
8
High-Throughput Protein-Protein Interaction Assays Using Tripartite Split-GFP Complementation.
Methods Mol Biol. 2019;2025:423-437. doi: 10.1007/978-1-4939-9624-7_20.
9
Expression of soluble recombinant proteins in a cell-free system using a 96-well format.
J Biochem Biophys Methods. 2003 Mar 28;55(3):233-40. doi: 10.1016/s0165-022x(03)00049-6.

引用本文的文献

1
intein-mediated multiprotein assembly via engineered cross-species consortia.
Front Bioeng Biotechnol. 2025 Apr 25;13:1529655. doi: 10.3389/fbioe.2025.1529655. eCollection 2025.
2
Designer artificial environments for membrane protein synthesis.
Nat Commun. 2025 May 10;16(1):4363. doi: 10.1038/s41467-025-59471-1.
5
Design of a chromogenic substrate for elastase based on split GFP system-Proof of concept for colour switch sensors.
Biotechnol Rep (Amst). 2019 Mar 18;22:e00324. doi: 10.1016/j.btre.2019.e00324. eCollection 2019 Jun.
7
Self-Assembling NanoLuc Luciferase Fragments as Probes for Protein Aggregation in Living Cells.
ACS Chem Biol. 2016 Jan 15;11(1):132-8. doi: 10.1021/acschembio.5b00758. Epub 2015 Nov 6.
8
Techniques for Monitoring Protein Misfolding and Aggregation in Vitro and in Living Cells.
Korean J Chem Eng. 2012 Jun;29(6):693-702. doi: 10.1007/s11814-012-0060-x.
10
Fluorescent labeling of antibody fragments using split GFP.
PLoS One. 2011;6(10):e25727. doi: 10.1371/journal.pone.0025727. Epub 2011 Oct 5.

本文引用的文献

1
Recombinant protein expression and solubility screening in Escherichia coli: a comparative study.
Acta Crystallogr D Biol Crystallogr. 2006 Oct;62(Pt 10):1218-26. doi: 10.1107/S0907444906031337. Epub 2006 Sep 19.
2
In vivo and in vitro protein solubility assays using split GFP.
Nat Methods. 2006 Oct;3(10):845-54. doi: 10.1038/nmeth932.
3
Antibody-free method for protein detection on blots using enzyme fragment complementation.
Biotechniques. 2006 Mar;40(3):381-3. doi: 10.2144/000112119.
4
Engineering and characterization of a superfolder green fluorescent protein.
Nat Biotechnol. 2006 Jan;24(1):79-88. doi: 10.1038/nbt1172. Epub 2005 Dec 20.
6
Automated expression and solubility screening of His-tagged proteins in 96-well format.
Anal Biochem. 2005 Nov 1;346(1):77-84. doi: 10.1016/j.ab.2005.07.039. Epub 2005 Aug 15.
7
Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein.
Nat Biotechnol. 2005 Jan;23(1):102-7. doi: 10.1038/nbt1044. Epub 2004 Dec 5.
8
9
Studies on the C-terminus of the Cowpea mosaic virus movement protein.
Arch Virol. 2003 Feb;148(2):265-79. doi: 10.1007/s00705-002-0918-z.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验