Suppr超能文献

利用多种数据源对酵母细胞周期转录因子进行系统鉴定。

Systematic identification of yeast cell cycle transcription factors using multiple data sources.

作者信息

Wu Wei-Sheng, Li Wen-Hsiung

机构信息

Department of Evolution and Ecology, University of Chicago, Chicago, IL 60637, USA.

出版信息

BMC Bioinformatics. 2008 Dec 5;9:522. doi: 10.1186/1471-2105-9-522.

Abstract

BACKGROUND

Eukaryotic cell cycle is a complex process and is precisely regulated at many levels. Many genes specific to the cell cycle are regulated transcriptionally and are expressed just before they are needed. To understand the cell cycle process, it is important to identify the cell cycle transcription factors (TFs) that regulate the expression of cell cycle-regulated genes.

RESULTS

We developed a method to identify cell cycle TFs in yeast by integrating current ChIP-chip, mutant, transcription factor binding site (TFBS), and cell cycle gene expression data. We identified 17 cell cycle TFs, 12 of which are known cell cycle TFs, while the remaining five (Ash1, Rlm1, Ste12, Stp1, Tec1) are putative novel cell cycle TFs. For each cell cycle TF, we assigned specific cell cycle phases in which the TF functions and identified the time lag for the TF to exert regulatory effects on its target genes. We also identified 178 novel cell cycle-regulated genes, among which 59 have unknown functions, but they may now be annotated as cell cycle-regulated genes. Most of our predictions are supported by previous experimental or computational studies. Furthermore, a high confidence TF-gene regulatory matrix is derived as a byproduct of our method. Each TF-gene regulatory relationship in this matrix is supported by at least three data sources: gene expression, TFBS, and ChIP-chip or/and mutant data. We show that our method performs better than four existing methods for identifying yeast cell cycle TFs. Finally, an application of our method to different cell cycle gene expression datasets suggests that our method is robust.

CONCLUSION

Our method is effective for identifying yeast cell cycle TFs and cell cycle-regulated genes. Many of our predictions are validated by the literature. Our study shows that integrating multiple data sources is a powerful approach to studying complex biological systems.

摘要

背景

真核细胞周期是一个复杂的过程,在多个层面受到精确调控。许多细胞周期特异性基因在转录水平受到调控,且仅在需要之前表达。为了解细胞周期过程,识别调控细胞周期调控基因表达的细胞周期转录因子(TFs)至关重要。

结果

我们开发了一种通过整合当前的染色质免疫沉淀芯片(ChIP-chip)、突变体、转录因子结合位点(TFBS)和细胞周期基因表达数据来识别酵母细胞周期TFs的方法。我们识别出17个细胞周期TFs,其中12个是已知的细胞周期TFs,而其余5个(Ash1、Rlm1、Ste12、Stp1、Tec1)是推定的新型细胞周期TFs。对于每个细胞周期TF,我们确定了其发挥功能的特定细胞周期阶段,并确定了该TF对其靶基因发挥调控作用的时间滞后。我们还识别出178个新型细胞周期调控基因,其中59个功能未知,但现在可注释为细胞周期调控基因。我们的大多数预测得到了先前实验或计算研究的支持。此外,作为我们方法的副产品,还得出了一个高可信度的TF-基因调控矩阵。该矩阵中的每个TF-基因调控关系至少得到三个数据源的支持:基因表达、TFBS以及ChIP-chip或/和突变体数据。我们表明,我们的方法在识别酵母细胞周期TFs方面比现有的四种方法表现更好。最后,我们的方法在不同细胞周期基因表达数据集上的应用表明我们的方法具有稳健性。

结论

我们的方法对于识别酵母细胞周期TFs和细胞周期调控基因是有效的。我们的许多预测已被文献验证。我们的研究表明,整合多个数据源是研究复杂生物系统的有力方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03b8/2613934/df1542454dea/1471-2105-9-522-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验