Kurokawa Junko, Bankston John R, Kaihara Asami, Chen Lei, Furukawa Tetsushi, Kass Robert S
Department of Bio-Informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
Channels (Austin). 2009 Jan-Feb;3(1):16-24. doi: 10.4161/chan.3.1.7387. Epub 2009 Jan 7.
Co-assembly of KCNQ1 with different accessory, or beta, subunits that are members of the KCNE family results in potassium (K+) channels that conduct functionally distinct currents. The alpha subunit KCNQ1 conducts a slowly activated delayed rectifier K+ current (IKs), a major contributor to cardiac repolarization, when co-assembled with KCNE1 and channels that favor the open state when co-assembled with either KCNE2 or KCNE3. In the heart, stimulation of the sympathetic nervous system enhances IKs. A macromolecular signaling complex of the IKs channel including the targeting protein Yotiao coordinates up or downregulation of channel activity by protein kinase A (PKA) phosphorylation and dephosphorylation of molecules in the complex. beta-adrenergic receptor mediated IKs upregulation, a functional consequence of PKA phosphorylation of the KCNQ1 amino terminus (N-T), requires co-expression of KCNQ1/Yotiao with KCNE1. Here, we report that co-expression of KCNE2, like KCNE1, confers a functional channel response to KCNQ1 phosphorylation, but co-expression of KCNE3 does not. Amino acid sequence comparison among the KCNE peptides, and KCNE1 truncation experiments, reveal a segment of the predicted intracellular KCNE1 carboxyl terminus (C-T) that is necessary for functional transduction of PKA phosphorylated KCNQ1. Moreover, chimera analysis reveals a region of KCNE1 sufficient to confer cAMP-dependent functional regulation upon the KCNQ1_KCNE3_Yotiao channel. The property of specific beta subunits to transduce post-translational regulation of alpha subunits of ion channels adds another dimension to our understanding molecular mechanisms underlying the diversity of regulation of native K+ channels.
KCNQ1与KCNE家族成员中的不同辅助亚基(即β亚基)共同组装会形成传导功能不同电流的钾(K+)通道。α亚基KCNQ1与KCNE1共同组装时会传导缓慢激活的延迟整流K+电流(IKs),这是心脏复极化的主要贡献者,而与KCNE2或KCNE3共同组装时会形成有利于开放状态的通道。在心脏中,交感神经系统的刺激会增强IKs。IKs通道的大分子信号复合物包括靶向蛋白Yotiao,它通过蛋白激酶A(PKA)对复合物中分子的磷酸化和去磷酸化来协调通道活性的上调或下调。β-肾上腺素能受体介导的IKs上调是KCNQ1氨基末端(N-T)PKA磷酸化的功能结果,需要KCNQ1/Yotiao与KCNE1共同表达。在这里,我们报告KCNE2与KCNE1一样,共同表达赋予KCNQ1磷酸化功能性通道反应,但KCNE3共同表达则不会。KCNE肽之间的氨基酸序列比较以及KCNE1截短实验揭示了预测的细胞内KCNE1羧基末端(C-T)的一段,这是PKA磷酸化的KCNQ1功能转导所必需的。此外,嵌合体分析揭示了KCNE1的一个区域,该区域足以赋予KCNQ1_KCNE3_Yotiao通道cAMP依赖性功能调节。特定β亚基转导离子通道α亚基翻译后调节的特性为我们理解天然K+通道调节多样性的分子机制增添了新的维度。