Georgescu Constantin, Longabaugh William J R, Scripture-Adams Deirdre D, David-Fung Elizabeth-Sharon, Yui Mary A, Zarnegar Mark A, Bolouri Hamid, Rothenberg Ellen V
Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA.
Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20100-5. doi: 10.1073/pnas.0806501105. Epub 2008 Dec 22.
Choice of a T lymphoid fate by hematopoietic progenitor cells depends on sustained Notch-Delta signaling combined with tightly regulated activities of multiple transcription factors. To dissect the regulatory network connections that mediate this process, we have used high-resolution analysis of regulatory gene expression trajectories from the beginning to the end of specification, tests of the short-term Notch dependence of these gene expression changes, and analyses of the effects of overexpression of two essential transcription factors, namely PU.1 and GATA-3. Quantitative expression measurements of >50 transcription factor and marker genes have been used to derive the principal components of regulatory change through which T cell precursors progress from primitive multipotency to T lineage commitment. Our analyses reveal separate contributions of Notch signaling, GATA-3 activity, and down-regulation of PU.1. Using BioTapestry (www.BioTapestry.org), the results have been assembled into a draft gene regulatory network for the specification of T cell precursors and the choice of T as opposed to myeloid/dendritic or mast-cell fates. This network also accommodates effects of E proteins and mutual repression circuits of Gfi1 against Egr-2 and of TCF-1 against PU.1 as proposed elsewhere, but requires additional functions that remain unidentified. Distinctive features of this network structure include the intense dose dependence of GATA-3 effects, the gene-specific modulation of PU.1 activity based on Notch activity, the lack of direct opposition between PU.1 and GATA-3, and the need for a distinct, late-acting repressive function or functions to extinguish stem and progenitor-derived regulatory gene expression.
造血祖细胞选择T淋巴细胞命运取决于持续的Notch-Delta信号传导以及多种转录因子严格调控的活性。为了剖析介导这一过程的调控网络连接,我们从特化开始到结束对调控基因表达轨迹进行了高分辨率分析,测试了这些基因表达变化对Notch的短期依赖性,并分析了两种重要转录因子PU.1和GATA-3过表达的影响。通过对50多个转录因子和标记基因的定量表达测量,得出了T细胞前体从原始多能性向T细胞谱系定向分化过程中调控变化的主要成分。我们的分析揭示了Notch信号传导、GATA-3活性和PU.1下调的不同作用。利用BioTapestry(www.BioTapestry.org),这些结果已被整合到一个基因调控网络草案中,用于T细胞前体的特化以及T细胞与髓样/树突状细胞或肥大细胞命运的选择。该网络也考虑了E蛋白的作用以及如其他地方所提出的Gfi1对Egr-2和TCF-1对PU.1的相互抑制回路,但还需要其他尚未确定的功能。这种网络结构的独特特征包括GATA-3效应的强烈剂量依赖性、基于Notch活性对PU.1活性的基因特异性调节、PU.1和GATA-3之间缺乏直接对抗,以及需要一种独特的、后期起作用的抑制功能来消除干细胞和祖细胞衍生的调控基因表达。