Ruggiero Alessia, Masullo Mariorosario, Ruocco Maria Rosaria, Grimaldi Pasquale, Lanzotti Maria Angela, Arcari Paolo, Zagari Adriana, Vitagliano Luigi
Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Napoli, Italy.
Biochim Biophys Acta. 2009 Mar;1794(3):554-62. doi: 10.1016/j.bbapap.2008.11.011. Epub 2008 Dec 6.
Recent investigations have demonstrated that disulfide bridges may play a crucial role in the stabilization of proteins in hyperthermophilic organisms. A major role in the process of disulfide formation is played by ubiquitous proteins belonging to the thioredoxin superfamily, which includes thioredoxins (Trx), thioredoxin reductases (TrxR), and disulfide oxidases/isomerases (PDO/PDI). Here we report a characterization of the structure and stability of the TrxR (SsTrxRB3) isolated from the archaeon Sulfolobus solfataricus. This protein is particularly interesting since it is able to process different substrates (Trxs and PDO) and it is endowed with an additional NADH oxidase activity. The crystal structure of the wild-type enzyme, of its complex with NADP and of the C147A mutant provides interesting clues on the enzyme function. In contrast to what is observed for class II TrxRs, in the structure of the oxidized enzyme, the FAD binding site is occupied by a partially disordered NAD molecule. In the active site of the C147A mutant, which exhibits a marginal NADH oxidase activity, the FAD is canonically bound to the enzyme. Molecular modeling indicates that a FAD molecule can be accommodated in the site of the reduced SsTrxRB3. Depending on the oxidation state, SsTrxRB3 can bind a different cofactor in its active site. This peculiar feature has been related to its dual activity. Denaturation experiments followed by circular dichroism indicate that electrostatic interactions play an important role in the stabilization of this thermostable protein. The analysis of the enzyme 3D-structure has also provided insights into the bases of SsTrxRB3 stability.
最近的研究表明,二硫键可能在嗜热生物中蛋白质的稳定化过程中发挥关键作用。在二硫键形成过程中,一个主要作用由属于硫氧还蛋白超家族的普遍存在的蛋白质发挥,该超家族包括硫氧还蛋白(Trx)、硫氧还蛋白还原酶(TrxR)和二硫键氧化酶/异构酶(PDO/PDI)。在此,我们报告了从嗜热栖热菌中分离出的TrxR(SsTrxRB3)的结构和稳定性特征。这种蛋白质特别有趣,因为它能够处理不同的底物(Trx和PDO),并且具有额外的NADH氧化酶活性。野生型酶、其与NADP的复合物以及C147A突变体的晶体结构为酶的功能提供了有趣的线索。与II类TrxR不同,在氧化型酶的结构中,FAD结合位点被一个部分无序的NAD分子占据。在表现出微弱NADH氧化酶活性的C147A突变体的活性位点中,FAD正常地与酶结合。分子模拟表明,一个FAD分子可以容纳在还原型SsTrxRB3的位点中。根据氧化状态,SsTrxRB3可以在其活性位点结合不同的辅因子。这一独特特征与其双重活性有关。通过圆二色性进行的变性实验表明,静电相互作用在这种耐热蛋白质的稳定化中起重要作用。对酶三维结构的分析也为SsTrxRB3稳定性的基础提供了见解。