Suppr超能文献

一种用于加速极化势能函数中偶极收敛的耦合极化矩阵反演和迭代方法。

A coupled polarization-matrix inversion and iteration approach for accelerating the dipole convergence in a polarizable potential function.

机构信息

Department of Chemistry, Digital Technology Center and Supercomputing Institute, University of Minnesota, Minneapolis Minnesota 55455, USA.

出版信息

J Phys Chem A. 2009 Mar 12;113(10):2109-16. doi: 10.1021/jp808952m.

Abstract

A coupled polarization-matrix inversion and iteration (CPII) method is described to achieve and accelerate the convergence of induced dipoles for condensed phase systems employing polarizable intermolecular potential functions (PIPF). The present PIPF is based on the Thole interaction dipole model in which all atomic pair interactions are considered, including those that are directly bonded covalently. Although induced dipoles can be obtained both by inverting a 3N x 3N polarization-matrix where N is the number of polarizable sites, or by a direct iterative approach, the latter approach is more efficient computationally for large systems in molecular dynamics simulations. It was found that induced dipole moments failed to converge in the direct iterative approach if 1-2, 1-3, and 1-4 intramolecular interactions are included in the Thole model. However, it is necessary to include all intramolecular interactions in the Thole model to yield the correct molecular anisotropic polarizability tensor. To solve this numerical stability problem, we reformulated the Thole interaction dipole model in terms of molecular block matrices, which naturally leads to a coupled, preconditioning algorithm that involves a polarization-matrix inversion term to account for intramolecular interactions, and an iterative procedure to incorporate the mutual polarization effects between different molecules. The CPII method is illustrated by applying to cubic boxes of water and NMA molecules as well as an alanine pentapeptide configuration, and it was shown that the CPII method can achieve convergence for the dipole induction polarization rapidly in all cases, whereas the direct iterative approach failed to reach convergence in these cases. In addition, the CPII reduces the overall computational costs by decreasing the number of iteration steps in comparison with the direct iteration approach in which intramolecular bonded interactions are excluded to ensure that induced dipole convergence is obtained.

摘要

描述了一种耦合的极化矩阵反演和迭代(CPII)方法,用于实现和加速凝聚相系统中诱导偶极子的收敛,该方法采用可极化分子间势能函数(PIPF)。本研究中的 PIPF 基于 Thole 相互作用偶极子模型,其中考虑了所有原子对相互作用,包括直接键合的共价相互作用。尽管可以通过反演 3N x 3N 极化矩阵(其中 N 是可极化位点的数量)或直接迭代方法来获得诱导偶极子,但对于分子动力学模拟中的大型系统,后者在计算上更有效。研究发现,如果在 Thole 模型中包含 1-2、1-3 和 1-4 分子内相互作用,则直接迭代方法无法使诱导偶极矩收敛。然而,为了得到正确的分子各向异性极化率张量,有必要在 Thole 模型中包含所有分子内相互作用。为了解决这个数值稳定性问题,我们根据分子块矩阵重新表述了 Thole 相互作用偶极子模型,这自然导致了一种耦合的、预处理算法,该算法涉及极化矩阵反演项以解释分子内相互作用,以及迭代过程以合并不同分子之间的相互极化效应。CPII 方法通过应用于水和 NMA 分子的立方盒以及丙氨酸五肽构型进行了说明,结果表明 CPII 方法可以在所有情况下快速实现偶极感应极化的收敛,而直接迭代方法在这些情况下无法达到收敛。此外,CPII 通过减少迭代步骤的数量,与直接迭代方法相比,降低了整体计算成本,在直接迭代方法中排除了分子内键合相互作用,以确保获得诱导偶极子的收敛。

相似文献

2
Evaluation of Representations and Response Models for Polarizable Force Fields.
J Phys Chem B. 2016 Aug 25;120(33):8668-84. doi: 10.1021/acs.jpcb.6b03392. Epub 2016 Jun 16.
3
5
Gaussian induced dipole polarization model.
J Comput Chem. 2007 May;28(7):1261-74. doi: 10.1002/jcc.20574.
6
Dipole preserving and polarization consistent charges.
J Comput Chem. 2011 Jul 30;32(10):2127-39. doi: 10.1002/jcc.21795. Epub 2011 May 3.
9
Simulations of the OKE Response in Simple Liquids Using a Polarizable and a Nonpolarizable Force Field.
J Phys Chem B. 2018 Feb 8;122(5):1638-1654. doi: 10.1021/acs.jpcb.7b08724. Epub 2018 Jan 26.
10
Fast divide-and-conquer algorithm for evaluating polarization in classical force fields.
J Chem Phys. 2017 Mar 21;146(11):114103. doi: 10.1063/1.4977981.

引用本文的文献

1
CHARMM at 45: Enhancements in Accessibility, Functionality, and Speed.
J Phys Chem B. 2024 Oct 17;128(41):9976-10042. doi: 10.1021/acs.jpcb.4c04100. Epub 2024 Sep 20.
2
Assessment of Amino Acid Electrostatic Parametrizations of the Polarizable Gaussian Multipole Model.
J Chem Theory Comput. 2024 Mar 12;20(5):2098-2110. doi: 10.1021/acs.jctc.3c01347. Epub 2024 Feb 23.
3
Transferability of the Electrostatic Parameters of the Polarizable Gaussian Multipole Model.
J Chem Theory Comput. 2023 Feb 14;19(3):924-941. doi: 10.1021/acs.jctc.2c01048. Epub 2023 Jan 25.
5
Better force fields start with better data: A data set of cation dipeptide interactions.
Sci Data. 2022 Jun 17;9(1):327. doi: 10.1038/s41597-022-01297-3.
6
: A Program for Electrostatic Parameterizations of Additive and Induced Dipole Polarizable Force Fields.
J Chem Theory Comput. 2022 Jun 14;18(6):3654-3670. doi: 10.1021/acs.jctc.2c00230. Epub 2022 May 10.
8
Polarized Molecular Orbital Model Chemistry. II. The PMO Method.
J Chem Theory Comput. 2011 Apr 12;7(4):857-867. doi: 10.1021/ct100638g.
9
Dipole preserving and polarization consistent charges.
J Comput Chem. 2011 Jul 30;32(10):2127-39. doi: 10.1002/jcc.21795. Epub 2011 May 3.

本文引用的文献

1
Special Issue on Polarization.
J Chem Theory Comput. 2007 Nov;3(6):1877. doi: 10.1021/ct700252g.
3
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
4
The Design of a Next Generation Force Field: The X-POL Potential.
J Chem Theory Comput. 2007 Nov;3(6):1890-1900. doi: 10.1021/ct700167b.
5
6
Incorporation of a QM/MM buffer zone in the variational double self-consistent field method.
J Phys Chem B. 2008 Nov 13;112(45):14124-31. doi: 10.1021/jp804512f. Epub 2008 Oct 21.
9
Understanding the dielectric properties of liquid amides from a polarizable force field.
J Phys Chem B. 2008 Mar 20;112(11):3509-21. doi: 10.1021/jp709729d. Epub 2008 Feb 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验