Suppr超能文献

胱硫醚γ-裂合酶是罗伊氏乳杆菌BR11中胱氨酸介导的氧化防御的一个组成部分。

Cystathionine gamma-lyase is a component of cystine-mediated oxidative defense in Lactobacillus reuteri BR11.

作者信息

Lo Raquel, Turner Mark S, Barry Daniel G, Sreekumar Revathy, Walsh Terence P, Giffard Philip M

机构信息

Infectious Diseases Program, Cells and Tissues Domain, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.

出版信息

J Bacteriol. 2009 Mar;191(6):1827-37. doi: 10.1128/JB.01553-08. Epub 2009 Jan 5.

Abstract

Lactobacillus reuteri BR11 possesses a novel mechanism of oxidative defense involving an abundant cystine ABC transporter encoded by the cyuABC gene cluster. Large amounts of thiols, including H(2)S, are secreted upon cystine uptake by the CyuC transporter. A cystathionine gamma-lyase (cgl) gene is cotranscribed with the cyu genes in several L. reuteri strains and was hypothesized to participate in cystine-mediated oxidative defense by producing reducing equivalents. This hypothesis was tested with L. reuteri BR11 by constructing a cgl mutant (PNG901) and comparing it to a similarly constructed cyuC mutant (PNG902). Although Cgl was required for H(2)S production from cystine, it was not crucial for oxidative defense in de Mann-Rogosa-Sharpe medium, in contrast to CyuC, whose inactivation resulted in lag-phase arrest in aerated cultures. The importance of Cgl in oxidative defense was seen only in the presence of hemin, which poses severe oxidative stress. The growth defects in aerated cultures of both mutants were alleviated by supplementation with cysteine (and cystine in the cgl mutant) but not methionine, with the cyuC mutant showing a much higher concentration requirement. We conclude that L. reuteri BR11 requires a high concentration of exogenous cysteine/cystine to grow optimally under aerobic conditions. This requirement is fulfilled by the abundant CyuC transporter, which has probably arisen due to the broad substrate specificity of Cgl, resulting in a futile pathway which degrades cystine taken up by the CyuC transporter to H(2)S. Cgl plays a secondary role in oxidative defense by its well-documented function of cysteine biosynthesis.

摘要

罗伊氏乳杆菌BR11拥有一种新的氧化防御机制,该机制涉及由cyuABC基因簇编码的丰富的胱氨酸ABC转运蛋白。CyuC转运蛋白摄取胱氨酸时会分泌大量硫醇,包括H₂S。在几种罗伊氏乳杆菌菌株中,胱硫醚γ-裂解酶(cgl)基因与cyu基因共转录,据推测它通过产生还原当量参与胱氨酸介导的氧化防御。通过构建cgl突变体(PNG901)并将其与类似构建的cyuC突变体(PNG902)进行比较,对罗伊氏乳杆菌BR11进行了这一假设的验证。尽管从胱氨酸产生H₂S需要Cgl,但与CyuC不同,它对德氏乳杆菌-罗格斯-夏普培养基中的氧化防御并非至关重要,CyuC的失活会导致通气培养中的对数期停滞。只有在存在造成严重氧化应激的血红素时,才能看出Cgl在氧化防御中的重要性。补充半胱氨酸(cgl突变体中为胱氨酸)可缓解两种突变体通气培养中的生长缺陷,但补充甲硫氨酸则不能,cyuC突变体显示出更高的浓度需求。我们得出结论,罗伊氏乳杆菌BR11在有氧条件下需要高浓度的外源半胱氨酸/胱氨酸才能最佳生长。这种需求由丰富的CyuC转运蛋白满足,这可能是由于Cgl的广泛底物特异性导致的,从而产生了一条无效途径,将CyuC转运蛋白摄取的胱氨酸降解为H₂S。Cgl通过其在半胱氨酸生物合成中已得到充分证明的功能在氧化防御中起次要作用。

相似文献

1
Cystathionine gamma-lyase is a component of cystine-mediated oxidative defense in Lactobacillus reuteri BR11.
J Bacteriol. 2009 Mar;191(6):1827-37. doi: 10.1128/JB.01553-08. Epub 2009 Jan 5.
2
BspA (CyuC) in Lactobacillus fermentum BR11 is a highly expressed high-affinity L-cystine-binding protein.
Curr Microbiol. 2005 Jan;50(1):33-7. doi: 10.1007/s00284-004-4408-2. Epub 2005 Jan 18.
3
Cystine uptake prevents production of hydrogen peroxide by Lactobacillus fermentum BR11.
FEMS Microbiol Lett. 2003 Oct 10;227(1):93-9. doi: 10.1016/S0378-1097(03)00653-0.
6
The bspA locus of Lactobacillus fermentum BR11 encodes an L-cystine uptake system.
J Bacteriol. 1999 Apr;181(7):2192-8. doi: 10.1128/JB.181.7.2192-2198.1999.
8
Cystathionine γ-Lyase Self-Inactivates by Polysulfidation during Cystine Metabolism.
Int J Mol Sci. 2023 Jun 10;24(12):9982. doi: 10.3390/ijms24129982.
9
Oxidative stress response of Deinococcus geothermalis via a cystine importer.
J Microbiol. 2017 Feb;55(2):137-146. doi: 10.1007/s12275-017-6382-y. Epub 2017 Jan 26.

引用本文的文献

1
3
Influence of Redox Imbalances on the Transposition of Insertion Sequences in .
Antioxidants (Basel). 2021 Oct 15;10(10):1623. doi: 10.3390/antiox10101623.
4
Characterization of γ-glutamyl cysteine ligases from Limosilactobacillus reuteri producing kokumi-active γ-glutamyl dipeptides.
Appl Microbiol Biotechnol. 2021 Jul;105(13):5503-5515. doi: 10.1007/s00253-021-11429-1. Epub 2021 Jul 6.
6
Phenotypic Diversity of Strains.
Front Microbiol. 2018 Aug 28;9:2003. doi: 10.3389/fmicb.2018.02003. eCollection 2018.
7
Structural and functional studies of pyruvate carboxylase regulation by cyclic di-AMP in lactic acid bacteria.
Proc Natl Acad Sci U S A. 2017 Aug 29;114(35):E7226-E7235. doi: 10.1073/pnas.1704756114. Epub 2017 Aug 14.
8
Oxidative stress response of Deinococcus geothermalis via a cystine importer.
J Microbiol. 2017 Feb;55(2):137-146. doi: 10.1007/s12275-017-6382-y. Epub 2017 Jan 26.
9
Death by Cystine: an Adverse Emergent Property from a Beneficial Series of Reactions.
J Bacteriol. 2015 Dec;197(23):3626-8. doi: 10.1128/JB.00546-15. Epub 2015 Sep 14.

本文引用的文献

1
Synthesis of gamma-glutamylcysteine as a major low-molecular-weight thiol in lactic acid bacteria Leuconostoc spp.
Biochem Biophys Res Commun. 2008 May 16;369(4):1047-51. doi: 10.1016/j.bbrc.2008.02.139. Epub 2008 Mar 7.
2
Cloning and characterization of two Lactobacillus casei genes encoding a cystathionine lyase.
Appl Environ Microbiol. 2008 Jan;74(1):99-106. doi: 10.1128/AEM.00745-07. Epub 2007 Nov 9.
3
S-cysteinylation is a general mechanism for thiol protection of Bacillus subtilis proteins after oxidative stress.
J Biol Chem. 2007 Sep 7;282(36):25981-5. doi: 10.1074/jbc.C700105200. Epub 2007 Jul 4.
7
Conversion of methionine to cysteine in Bacillus subtilis and its regulation.
J Bacteriol. 2007 Jan;189(1):187-97. doi: 10.1128/JB.01273-06. Epub 2006 Oct 20.
9
Two transsulfurylation pathways in Klebsiella pneumoniae.
J Bacteriol. 2006 Aug;188(16):5762-74. doi: 10.1128/JB.00347-06.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验