Suppr超能文献

通过远程相互作用传播的流行病的建模控制。

Modelling control of epidemics spreading by long-range interactions.

作者信息

Dybiec Bartłomiej, Kleczkowski Adam, Gilligan Christopher A

机构信息

M. Smoluchowski Institute of Physics, and Mark Kac Center for Complex Systems Research, Jagellonian University, ul. Reymonta 4, Kraków, Poland.

出版信息

J R Soc Interface. 2009 Oct 6;6(39):941-50. doi: 10.1098/rsif.2008.0468. Epub 2009 Jan 6.

Abstract

We have studied the spread of epidemics characterized by a mixture of local and non-local interactions. The infection spreads on a two-dimensional lattice with the fixed nearest neighbour connections. In addition, long-range dynamical links are formed by moving agents (vectors). Vectors perform random walks, with step length distributed according to a thick-tail distribution. Two distributions are considered in this paper, an alpha-stable distribution describing self-similar vector movement, yet characterized by an infinite variance and an exponential power characterized by a large but finite variance. Such long-range interactions are hard to track and make control of epidemics very difficult. We also allowed for cryptic infection, whereby an infected individual on the lattice can be infectious prior to showing any symptoms of infection or disease. To account for such cryptic spread, we considered a control strategy in which not only detected, i.e. symptomatic, individuals but also all individuals within a certain control neighbourhood are treated upon the detection of disease. We show that it is possible to eradicate the disease by using such purely local control measures, even in the presence of long-range jumps. In particular, we show that the success of local control and the choice of the optimal strategy depend in a non-trivial way on the dispersal patterns of the vectors. By characterizing these patterns using the stability index of the alpha-stable distribution to change the power-law behaviour or the exponent characterizing the decay of an exponential power distribution, we show that infection can be successfully contained using relatively small control neighbourhoods for two limiting cases for long-distance dispersal and for vectors that are much more limited in their dispersal range.

摘要

我们研究了以局部和非局部相互作用混合为特征的流行病传播。感染在具有固定最近邻连接的二维晶格上传播。此外,移动的媒介(载体)形成长程动态连接。媒介进行随机游走,步长根据厚尾分布。本文考虑了两种分布,一种是描述自相似媒介运动的α稳定分布,其特征是方差无限,另一种是具有大但有限方差的指数幂分布。这种长程相互作用难以追踪,使得流行病的控制非常困难。我们还考虑了隐性感染,即晶格上的受感染个体在出现任何感染或疾病症状之前就可能具有传染性。为了考虑这种隐性传播,我们考虑了一种控制策略,即在检测到疾病时,不仅对已检测到的、即有症状的个体进行治疗,而且对某个控制邻域内的所有个体进行治疗。我们表明,即使存在长程跳跃,使用这种纯粹的局部控制措施也有可能根除疾病。特别是,我们表明局部控制的成功和最优策略的选择以一种非平凡的方式取决于媒介的扩散模式。通过使用α稳定分布的稳定性指数来表征这些模式,以改变幂律行为或表征指数幂分布衰减的指数,我们表明,对于长距离扩散的两种极限情况以及扩散范围更有限的媒介,使用相对较小的控制邻域就可以成功控制感染。

相似文献

1
Modelling control of epidemics spreading by long-range interactions.
J R Soc Interface. 2009 Oct 6;6(39):941-50. doi: 10.1098/rsif.2008.0468. Epub 2009 Jan 6.
2
Combined effects of prevention and quarantine on a breakout in SIR model.
Sci Rep. 2011;1:10. doi: 10.1038/srep00010. Epub 2011 Jun 14.
3
Searching for the most cost-effective strategy for controlling epidemics spreading on regular and small-world networks.
J R Soc Interface. 2012 Jan 7;9(66):158-69. doi: 10.1098/rsif.2011.0216. Epub 2011 Jun 8.
4
Acceleration of evolutionary spread by long-range dispersal.
Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):E4911-9. doi: 10.1073/pnas.1404663111. Epub 2014 Nov 3.
5
Susceptible-infected-susceptible epidemics on networks with general infection and cure times.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jun;87(6):062816. doi: 10.1103/PhysRevE.87.062816. Epub 2013 Jun 24.
6
Effects of dispersal mechanisms on spatio-temporal development of epidemics.
J Theor Biol. 2004 Jan 21;226(2):125-41. doi: 10.1016/s0022-5193(03)00278-9.
10
Using multitype branching processes to quantify statistics of disease outbreaks in zoonotic epidemics.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Mar;89(3):032702. doi: 10.1103/PhysRevE.89.032702. Epub 2014 Mar 4.

引用本文的文献

1
COVID-19 vaccination strategies depend on the underlying network of social interactions.
Sci Rep. 2021 Dec 15;11(1):24051. doi: 10.1038/s41598-021-03167-1.
2
Non-extensive thermodynamic entropy to predict the dynamics behavior of COVID-19.
Physica B Condens Matter. 2022 Jan 1;624:413448. doi: 10.1016/j.physb.2021.413448. Epub 2021 Sep 30.
3
Mathematical prediction of the spreading rate of COVID-19 using entropy-based thermodynamic model.
Indian J Phys Proc Indian Assoc Cultiv Sci (2004). 2021;95(12):2567-2573. doi: 10.1007/s12648-020-01930-0. Epub 2021 Jan 2.
4
Modelling the spreading rate of controlled communicable epidemics through an entropy-based thermodynamic model.
Sci China Phys Mech Astron. 2013;56(11):2143-2150. doi: 10.1007/s11433-013-5321-0. Epub 2013 Oct 3.
7
Risk-based management of invading plant disease.
New Phytol. 2017 May;214(3):1317-1329. doi: 10.1111/nph.14488. Epub 2017 Mar 28.
8
Optimising and communicating options for the control of invasive plant disease when there is epidemiological uncertainty.
PLoS Comput Biol. 2015 Apr 13;11(4):e1004211. doi: 10.1371/journal.pcbi.1004211. eCollection 2015 Apr.
9
Degree of host susceptibility in the initial disease outbreak influences subsequent epidemic spread.
J Appl Ecol. 2014 Dec 1;51(6):1622-1630. doi: 10.1111/1365-2664.12326.
10
Cost-effective control of plant disease when epidemiological knowledge is incomplete: modelling Bahia bark scaling of citrus.
PLoS Comput Biol. 2014 Aug 7;10(8):e1003753. doi: 10.1371/journal.pcbi.1003753. eCollection 2014 Aug.

本文引用的文献

4
Scaling laws of marine predator search behaviour.
Nature. 2008 Feb 28;451(7182):1098-102. doi: 10.1038/nature06518.
5
Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer.
Nature. 2007 Oct 25;449(7165):1044-8. doi: 10.1038/nature06199.
7
Optimizing the control of disease infestations at the landscape scale.
Proc Natl Acad Sci U S A. 2007 Mar 20;104(12):4984-9. doi: 10.1073/pnas.0607900104. Epub 2007 Mar 13.
8
The scaling laws of human travel.
Nature. 2006 Jan 26;439(7075):462-5. doi: 10.1038/nature04292.
9
Phytophthora ramorum: integrative research and management of an emerging pathogen in California and Oregon forests.
Annu Rev Phytopathol. 2005;43:309-35. doi: 10.1146/annurev.phyto.42.040803.140418.
10
Controlling disease spread on networks with incomplete knowledge.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Dec;70(6 Pt 2):066145. doi: 10.1103/PhysRevE.70.066145. Epub 2004 Dec 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验