Baek Je-Hyun, Yang Won Suk, Lee Cheolju, Yu Myeong-Hee
Functional Proteomics Center and section signLife Sciences Division Korea Institute of Science and Technology, Hawolgok-dong, Seongbuk-gu, Seoul 136-791, Korea.
Mol Cell Proteomics. 2009 May;8(5):1072-81. doi: 10.1074/mcp.M800365-MCP200. Epub 2009 Jan 11.
The native state of alpha(1)-antitrypsin (alpha(1)AT), a member of the serine protease inhibitor (serpin) family, is considered a kinetically trapped folding intermediate that converts to a more stable form upon complex formation with a target protease. Although previous structural and mutational studies of alpha(1)AT revealed the structural basis of the native strain and the kinetic trap, the mechanism of how the native molecule overcomes the kinetic barrier to reach the final stable conformation during complex formation remains unknown. We hypothesized that during complex formation, a substantial portion of the molecule undergoes unfolding, which we dubbed functional unfolding. Hydrogen-deuterium exchange coupled with ESI-MS was used to analyze this serpin in three forms: native, complexing, and complexed with bovine beta-trypsin. Comparing the deuterium content at the corresponding regions of these three samples, we probed the unfolding of alpha(1)AT during complex formation. A substantial portion of the alpha(1)AT molecule unfolded transiently during complex formation, including not only the regions expected from previous structural studies, such as the reactive site loop, helix F, and the following loop, but also regions not predicted previously, such as helix A, strand 6 of beta-sheet B, and the N terminus. Such unfolding of the native interactions may elevate the free energy level of the kinetically trapped native serpin sufficiently to cross the transition state during complex formation. In the current study, we provide evidence that protein unfolding has to accompany functional execution of the protein molecule.
α1-抗胰蛋白酶(α1AT)是丝氨酸蛋白酶抑制剂(serpin)家族的成员,其天然状态被认为是一种动力学捕获的折叠中间体,在与靶蛋白酶形成复合物后会转化为更稳定的形式。尽管先前对α1AT的结构和突变研究揭示了天然张力和动力学捕获的结构基础,但在复合物形成过程中,天然分子如何克服动力学障碍以达到最终稳定构象的机制仍然未知。我们推测,在复合物形成过程中,分子的很大一部分会发生去折叠,我们将其称为功能性去折叠。采用氢氘交换结合电喷雾电离质谱法(ESI-MS)分析了这种丝氨酸蛋白酶抑制剂的三种形式:天然形式、复合形式以及与牛β-胰蛋白酶的复合物形式。通过比较这三个样品相应区域的氘含量,我们探究了α1AT在复合物形成过程中的去折叠情况。在复合物形成过程中,α1AT分子的很大一部分会短暂去折叠,不仅包括先前结构研究中预期的区域,如反应位点环、F螺旋以及后续的环,还包括先前未预测到的区域,如A螺旋、β折叠B的6链以及N端。天然相互作用的这种去折叠可能会充分提高动力学捕获的天然丝氨酸蛋白酶抑制剂的自由能水平,以便在复合物形成过程中跨越过渡态。在本研究中,我们提供了证据表明蛋白质去折叠必须伴随蛋白质分子的功能执行。