Endeward Volker, Gros Gerolf
Zentrum Physiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany.
J Physiol. 2009 Mar 15;587(Pt 6):1153-67. doi: 10.1113/jphysiol.2008.165027. Epub 2009 Jan 12.
We have developed an experimental approach that allows us to quantify unstirred layers around cells suspended in stirred solutions. This technique is applicable to all types of transport measurements and was applied here to the (18)O technique used to measure CO(2) permeability of red cells (PCO2). We measure PCO2 in well-stirred red cell (RBC) suspensions of various viscosities adjusted by adding different amounts of 60 kDa dextran. Plotting 1/PCO2 vs. viscosity nu gives a linear relation, which can be extrapolated to nu=0. Theoretical hydrodynamics predicts that extracellular unstirred layers vanish at zero viscosity when stirring is maintained, and thus this extrapolation gives us an estimate of the PCO2 free from extracellular unstirred layer artifacts. The extrapolated value is found to be 0.16 cm s(-1) instead of the experimental value in saline of 0.12 cm s(-1) (+30%). This effect corresponds to an unstirred layer thickness of 0.5 microm. In addition, we present a theoretical approach modelling the actual geometrical and physico-chemical conditions of (18)O exchange in our experiments. It confirms the role of an extracellular unstirred layer in the determination of PCO2. Also, it allows us to quantify the contribution of the so-called intracellular unstirred layer, which results from the fact that in these transport measurements--as in all such measurements in general--the intracellular space is not stirred. The apparent thickness of this intracellular unstirred layer is about 1/4-1/3 of the maximal intracellular diffusion distance, and correction for it results in a true PCO2 of the RBC membrane of 0.20 cm s(-1). Thus, the order of magnitude of this is PCO2 unaltered compared to our previous reports. Discussion of the available evidence in the light of these results confirms that CO(2) channels exist in red cell and other membranes, and that PCO2 of red cell membranes in the absence of these channels is quite low.
我们开发了一种实验方法,可用于量化悬浮在搅拌溶液中的细胞周围的非搅拌层。该技术适用于所有类型的传输测量,在此应用于用于测量红细胞CO₂渗透率(PCO₂)的¹⁸O技术。我们在通过添加不同量的60 kDa葡聚糖来调节不同粘度的充分搅拌的红细胞(RBC)悬液中测量PCO₂。绘制1/PCO₂与粘度ν的关系图得到线性关系,该关系可外推至ν = 0。理论流体动力学预测,当保持搅拌时,细胞外非搅拌层在零粘度时消失,因此这种外推使我们能够估计不受细胞外非搅拌层伪影影响的PCO₂。发现外推值为0.16 cm s⁻¹,而不是盐溶液中的实验值0.12 cm s⁻¹(高30%)。这种效应对应于0.5微米的非搅拌层厚度。此外,我们提出了一种理论方法,对我们实验中¹⁸O交换的实际几何和物理化学条件进行建模。它证实了细胞外非搅拌层在确定PCO₂中的作用。此外,它使我们能够量化所谓的细胞内非搅拌层的贡献,这是由于在这些传输测量中——与一般所有此类测量一样——细胞内空间未被搅拌。该细胞内非搅拌层的表观厚度约为最大细胞内扩散距离的1/4 - 1/3,对其进行校正后,红细胞膜的真实PCO₂为0.20 cm s⁻¹。因此,与我们之前的报告相比,该PCO₂的数量级未改变。根据这些结果对现有证据的讨论证实,红细胞和其他膜中存在CO₂通道,并且在没有这些通道的情况下红细胞膜的PCO₂相当低。