Suppr超能文献

跨膜二氧化碳扩散测量中细胞外和细胞内静止层的影响——一种应用于红细胞质谱 18O 技术的新方法

Extra- and intracellular unstirred layer effects in measurements of CO2 diffusion across membranes--a novel approach applied to the mass spectrometric 18O technique for red blood cells.

作者信息

Endeward Volker, Gros Gerolf

机构信息

Zentrum Physiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany.

出版信息

J Physiol. 2009 Mar 15;587(Pt 6):1153-67. doi: 10.1113/jphysiol.2008.165027. Epub 2009 Jan 12.

Abstract

We have developed an experimental approach that allows us to quantify unstirred layers around cells suspended in stirred solutions. This technique is applicable to all types of transport measurements and was applied here to the (18)O technique used to measure CO(2) permeability of red cells (PCO2). We measure PCO2 in well-stirred red cell (RBC) suspensions of various viscosities adjusted by adding different amounts of 60 kDa dextran. Plotting 1/PCO2 vs. viscosity nu gives a linear relation, which can be extrapolated to nu=0. Theoretical hydrodynamics predicts that extracellular unstirred layers vanish at zero viscosity when stirring is maintained, and thus this extrapolation gives us an estimate of the PCO2 free from extracellular unstirred layer artifacts. The extrapolated value is found to be 0.16 cm s(-1) instead of the experimental value in saline of 0.12 cm s(-1) (+30%). This effect corresponds to an unstirred layer thickness of 0.5 microm. In addition, we present a theoretical approach modelling the actual geometrical and physico-chemical conditions of (18)O exchange in our experiments. It confirms the role of an extracellular unstirred layer in the determination of PCO2. Also, it allows us to quantify the contribution of the so-called intracellular unstirred layer, which results from the fact that in these transport measurements--as in all such measurements in general--the intracellular space is not stirred. The apparent thickness of this intracellular unstirred layer is about 1/4-1/3 of the maximal intracellular diffusion distance, and correction for it results in a true PCO2 of the RBC membrane of 0.20 cm s(-1). Thus, the order of magnitude of this is PCO2 unaltered compared to our previous reports. Discussion of the available evidence in the light of these results confirms that CO(2) channels exist in red cell and other membranes, and that PCO2 of red cell membranes in the absence of these channels is quite low.

摘要

我们开发了一种实验方法,可用于量化悬浮在搅拌溶液中的细胞周围的非搅拌层。该技术适用于所有类型的传输测量,在此应用于用于测量红细胞CO₂渗透率(PCO₂)的¹⁸O技术。我们在通过添加不同量的60 kDa葡聚糖来调节不同粘度的充分搅拌的红细胞(RBC)悬液中测量PCO₂。绘制1/PCO₂与粘度ν的关系图得到线性关系,该关系可外推至ν = 0。理论流体动力学预测,当保持搅拌时,细胞外非搅拌层在零粘度时消失,因此这种外推使我们能够估计不受细胞外非搅拌层伪影影响的PCO₂。发现外推值为0.16 cm s⁻¹,而不是盐溶液中的实验值0.12 cm s⁻¹(高30%)。这种效应对应于0.5微米的非搅拌层厚度。此外,我们提出了一种理论方法,对我们实验中¹⁸O交换的实际几何和物理化学条件进行建模。它证实了细胞外非搅拌层在确定PCO₂中的作用。此外,它使我们能够量化所谓的细胞内非搅拌层的贡献,这是由于在这些传输测量中——与一般所有此类测量一样——细胞内空间未被搅拌。该细胞内非搅拌层的表观厚度约为最大细胞内扩散距离的1/4 - 1/3,对其进行校正后,红细胞膜的真实PCO₂为0.20 cm s⁻¹。因此,与我们之前的报告相比,该PCO₂的数量级未改变。根据这些结果对现有证据的讨论证实,红细胞和其他膜中存在CO₂通道,并且在没有这些通道的情况下红细胞膜的PCO₂相当低。

相似文献

2
Low carbon dioxide permeability of the apical epithelial membrane of guinea-pig colon.
J Physiol. 2005 Aug 15;567(Pt 1):253-65. doi: 10.1113/jphysiol.2005.085761. Epub 2005 Jun 2.
3
Contribution of membrane permeability and unstirred layer diffusion to nitric oxide-red blood cell interaction.
J Theor Biol. 2013 Jan 21;317:321-30. doi: 10.1016/j.jtbi.2012.10.025. Epub 2012 Oct 29.
4
Cholesterol is the main regulator of the carbon dioxide permeability of biological membranes.
Am J Physiol Cell Physiol. 2018 Aug 1;315(2):C137-C140. doi: 10.1152/ajpcell.00139.2018. Epub 2018 Jun 6.
6
CO permeability and carbonic anhydrase activity of rat cardiomyocytes.
Acta Physiol (Oxf). 2017 Oct;221(2):115-128. doi: 10.1111/apha.12887. Epub 2017 May 15.
7
Diffusing capacity reexamined: relative roles of diffusion and chemical reaction in red cell uptake of O2, CO, CO2, and NO.
J Appl Physiol (1985). 2004 Dec;97(6):2284-302. doi: 10.1152/japplphysiol.00469.2004. Epub 2004 Aug 20.
8
CO2 Permeability of Rat Hepatocytes and Relation of CO2 Permeability to CO2 Production.
Cell Physiol Biochem. 2018;46(3):1198-1208. doi: 10.1159/000489070. Epub 2018 Apr 16.
9
Secondary CO2 diffusion following HCO3- shift across the red blood cell membrane.
Jpn J Physiol. 1984;34(6):1003-13. doi: 10.2170/jjphysiol.34.1003.
10
An analysis of unstirred layers in series with "tight" and "porous" lipid bilayer membranes.
J Gen Physiol. 1971 Apr;57(4):464-78. doi: 10.1085/jgp.57.4.464.

引用本文的文献

1
Design considerations of benchtop fluid flow bioreactors for bio-engineered tissue equivalents .
Biomater Biosyst. 2022 Aug 31;8:100063. doi: 10.1016/j.bbiosy.2022.100063. eCollection 2022 Dec.
2
O permeability of lipid bilayers is low, but increases with membrane cholesterol.
Cell Mol Life Sci. 2021 Dec;78(23):7649-7662. doi: 10.1007/s00018-021-03974-9. Epub 2021 Oct 25.
3
Cell physiology and molecular mechanism of anion transport by erythrocyte band 3/AE1.
Am J Physiol Cell Physiol. 2021 Dec 1;321(6):C1028-C1059. doi: 10.1152/ajpcell.00275.2021. Epub 2021 Oct 20.
4
Cells in New Light: Ion Concentration, Voltage, and Pressure Gradients across a Hydrogel Membrane.
ACS Omega. 2020 Aug 11;5(33):21024-21031. doi: 10.1021/acsomega.0c02595. eCollection 2020 Aug 25.
5
Sensing of tubular flow and renal electrolyte transport.
Nat Rev Nephrol. 2020 Jun;16(6):337-351. doi: 10.1038/s41581-020-0259-8. Epub 2020 Mar 3.
6
Weak Acid Permeation in Synthetic Lipid Vesicles and Across the Yeast Plasma Membrane.
Biophys J. 2020 Jan 21;118(2):422-434. doi: 10.1016/j.bpj.2019.11.3384. Epub 2019 Nov 27.
7
Measuring CO2 and HCO3- permeabilities of isolated chloroplasts using a MIMS-18O approach.
J Exp Bot. 2017 Jun 1;68(14):3915-3924. doi: 10.1093/jxb/erx188.
9
CrossTalk opposing view: Physiological CO2 exchange does not normally depend on membrane channels.
J Physiol. 2015 Dec 1;593(23):5029-32. doi: 10.1113/JP270013. Epub 2015 Nov 15.
10
Mathematical modeling of acid-base physiology.
Prog Biophys Mol Biol. 2015 Jan;117(1):43-58. doi: 10.1016/j.pbiomolbio.2015.01.003. Epub 2015 Jan 22.

本文引用的文献

1
Carbon dioxide transport through membranes.
J Biol Chem. 2008 Sep 12;283(37):25340-25347. doi: 10.1074/jbc.M800096200. Epub 2008 Jul 9.
2
RhAG protein of the Rhesus complex is a CO2 channel in the human red cell membrane.
FASEB J. 2008 Jan;22(1):64-73. doi: 10.1096/fj.07-9097com. Epub 2007 Aug 21.
3
Exploring gas permeability of cellular membranes and membrane channels with molecular dynamics.
J Struct Biol. 2007 Mar;157(3):534-44. doi: 10.1016/j.jsb.2006.11.008. Epub 2007 Jan 4.
5
Does CO2 permeate through aquaporin-1?
Biophys J. 2006 Aug 1;91(3):842-8. doi: 10.1529/biophysj.106.081406. Epub 2006 May 12.
6
Role of RhAG and AQP1 in NH3 and CO2 gas transport in red cell ghosts: a stopped-flow analysis.
Transfus Clin Biol. 2006 Mar-Apr;13(1-2):117-22. doi: 10.1016/j.tracli.2006.03.004. Epub 2006 Mar 29.
7
Red cell membrane CO2 permeability in normal human blood and in blood deficient in various blood groups, and effect of DIDS.
Transfus Clin Biol. 2006 Mar-Apr;13(1-2):123-7. doi: 10.1016/j.tracli.2006.02.007. Epub 2006 Mar 24.
8
Low carbon dioxide permeability of the apical epithelial membrane of guinea-pig colon.
J Physiol. 2005 Aug 15;567(Pt 1):253-65. doi: 10.1113/jphysiol.2005.085761. Epub 2005 Jun 2.
9
Permeability of lipid membranes to dioxygen.
Biochem Biophys Res Commun. 2004 Sep 24;322(3):746-50. doi: 10.1016/j.bbrc.2004.07.187.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验