Suppr超能文献

源自患者群体的药代动力学-药效学关系在葡萄球菌和链球菌替加环素断点确定中的应用

Application of patient population-derived pharmacokinetic-pharmacodynamic relationships to tigecycline breakpoint determination for staphylococci and streptococci.

作者信息

Ambrose Paul G, Meagher Alison K, Passarell Julie A, Van Wart Scott A, Cirincione Brenda B, Bhavnani Sujata M, Ellis-Grosse Evelyn

机构信息

Institute for Clinical Pharmacodynamics, Ordway Research Institute, Latham, NY 12208, USA.

出版信息

Diagn Microbiol Infect Dis. 2009 Feb;63(2):155-9. doi: 10.1016/j.diagmicrobio.2008.10.011.

Abstract

Correctly determined susceptibility breakpoints are important to both the individual patient and to society at large. A previously derived patient population pharmacokinetic model and Monte Carlo simulation (9999 patients) were used to create a likelihood distribution of tigecycline exposure, as measured by the area under the concentration-time curve at 24 h (AUC(24)). Each resultant AUC(24) value was paired with a clinically relevant fixed MIC value ranging from 0.12 to 2 mg/L. For each AUC(24)-MIC pair, the probability of microbiologic response was calculated using an exposure-response relationship, which was derived from patients with complicated skin and skin structure infections that involved Staphylococcus aureus or streptococci or both. The median probability of microbiologic success was 94% or greater for MIC values up to and including 0.25 mg/L. The median probability of microbiologic success was 66% or less for MIC values of 0.5 mg/L or greater. These data support a susceptibility breakpoint of 0.25 mg/L for S. aureus and streptococci.

摘要

正确确定的药敏折点对个体患者以及整个社会都很重要。使用先前推导的患者群体药代动力学模型和蒙特卡洛模拟(9999名患者)来创建替加环素暴露的似然分布,以24小时浓度-时间曲线下面积(AUC(24))来衡量。每个得到的AUC(24)值都与一个临床相关的固定MIC值配对,范围从0.12至2 mg/L。对于每对AUC(24)-MIC,使用暴露-反应关系计算微生物学反应的概率,该关系源自患有涉及金黄色葡萄球菌或链球菌或两者的复杂皮肤和皮肤结构感染的患者。对于MIC值小于或等于0.25 mg/L,微生物学成功的中位概率为94%或更高。对于MIC值为0.5 mg/L或更高,微生物学成功的中位概率为66%或更低。这些数据支持金黄色葡萄球菌和链球菌的药敏折点为0.25 mg/L。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验