Nienhaus G Ulrich
Institute of Biophysics, University of Ulm, Ulm, Germany.
Methods Mol Biol. 2009;490:311-37. doi: 10.1007/978-1-59745-367-7_13.
The structural and dynamic details of protein folding are still widely unexplored due to the enormous level of heterogeneity intrinsic to this process. The unfolded polypeptide chain can assume a vast number of possible conformations, and many complex pathways lead from the ensemble of unfolded conformations to the ensemble of native conformations in an overall funnel-shaped energy landscape. Classical experimental methods involve measurements on bulk samples and usually yield only average values characteristic of the entire molecular ensemble under study. The observation of individual molecules avoids this averaging and allows, in principle, microscopic distributions of conformations and folding trajectories to be revealed. Fluorescence-based techniques are arguably the most versatile single-molecule methods at present, and Förster resonance energy transfer (FRET) between two dye molecules specifically attached to the protein of interest provides a means of studying the inter-dye distance and, thereby, the conformation of folding polypeptide chains in real time. This chapter focuses on practical aspects and different experimental realizations for protein folding investigations by using single-molecule fluorescence.
由于蛋白质折叠过程中固有的高度异质性,其结构和动态细节仍未得到广泛探索。未折叠的多肽链可以呈现大量可能的构象,并且在整体呈漏斗状的能量景观中,许多复杂的途径从未折叠构象的集合通向天然构象的集合。经典的实验方法涉及对大量样品的测量,通常只能得到所研究的整个分子集合的特征平均值。对单个分子的观察避免了这种平均化,原则上可以揭示构象的微观分布和折叠轨迹。基于荧光的技术可以说是目前最通用的单分子方法,两个特异性附着在目标蛋白质上的染料分子之间的荧光共振能量转移(FRET)提供了一种实时研究染料间距离的方法,从而实时研究折叠多肽链的构象。本章重点介绍利用单分子荧光进行蛋白质折叠研究的实际操作和不同的实验实现方式。