Kemp Charles, Tenenbaum Joshua B
Department of Psychology, Carnegie Mellon University.
Psychol Rev. 2009 Jan;116(1):20-58. doi: 10.1037/a0014282.
Everyday inductive inferences are often guided by rich background knowledge. Formal models of induction should aim to incorporate this knowledge and should explain how different kinds of knowledge lead to the distinctive patterns of reasoning found in different inductive contexts. This article presents a Bayesian framework that attempts to meet both goals and describes [corrected] 4 applications of the framework: a taxonomic model, a spatial model, a threshold model, and a causal model. Each model makes probabilistic inferences about the extensions of novel properties, but the priors for the 4 models are defined over different kinds of structures that capture different relationships between the categories in a domain. The framework therefore shows how statistical inference can operate over structured background knowledge, and the authors argue that this interaction between structure and statistics is critical for explaining the power and flexibility of human reasoning.
日常归纳推理通常由丰富的背景知识引导。归纳的形式模型应旨在纳入这些知识,并应解释不同类型的知识如何导致在不同归纳情境中发现的独特推理模式。本文提出了一个贝叶斯框架,试图实现这两个目标,并描述了该框架的4个应用:一个分类模型、一个空间模型、一个阈值模型和一个因果模型。每个模型都对新属性的外延进行概率推断,但这4个模型的先验是在不同类型的结构上定义的,这些结构捕捉了一个领域中类别之间的不同关系。因此,该框架展示了统计推理如何在结构化背景知识上进行操作,作者认为这种结构与统计之间的相互作用对于解释人类推理的能力和灵活性至关重要。