Typas Athanasios, Nichols Robert J, Siegele Deborah A, Shales Michael, Collins Sean R, Lim Bentley, Braberg Hannes, Yamamoto Natsuko, Takeuchi Rikiya, Wanner Barry L, Mori Hirotada, Weissman Jonathan S, Krogan Nevan J, Gross Carol A
Department of Microbiology and Immunology, University of California at San Francisco, 600 16th Street, San Francisco, California 94158, USA.
Nat Methods. 2008 Sep;5(9):781-7. doi: 10.1038/nmeth.1240.
Large-scale genetic interaction studies provide the basis for defining gene function and pathway architecture. Recent advances in the ability to generate double mutants en masse in Saccharomyces cerevisiae have dramatically accelerated the acquisition of genetic interaction information and the biological inferences that follow. Here we describe a method based on F factor-driven conjugation, which allows for high-throughput generation of double mutants in Escherichia coli. This method, termed genetic interaction analysis technology for E. coli (GIANT-coli), permits us to systematically generate and array double-mutant cells on solid media in high-density arrays. We show that colony size provides a robust and quantitative output of cellular fitness and that GIANT-coli can recapitulate known synthetic interactions and identify previously unidentified negative (synthetic sickness or lethality) and positive (suppressive or epistatic) relationships. Finally, we describe a complementary strategy for genome-wide suppressor-mutant identification. Together, these methods permit rapid, large-scale genetic interaction studies in E. coli.
大规模遗传相互作用研究为定义基因功能和通路结构提供了基础。酿酒酵母中大规模制造双突变体能力的最新进展极大地加速了遗传相互作用信息的获取以及后续的生物学推断。在此,我们描述了一种基于F因子驱动的接合作用的方法,该方法可实现大肠杆菌中双突变体的高通量生成。这种方法称为大肠杆菌遗传相互作用分析技术(GIANT-coli),使我们能够在固体培养基上以高密度阵列系统地生成并排列双突变体细胞。我们表明,菌落大小提供了细胞适应性的可靠定量指标,并且GIANT-coli能够重现已知的合成相互作用,并识别先前未鉴定的负向(合成疾病或致死性)和正向(抑制或上位性)关系。最后,我们描述了一种用于全基因组抑制突变体鉴定的互补策略。总之,这些方法允许在大肠杆菌中进行快速、大规模的遗传相互作用研究。