Suppr超能文献

为在低GC含量革兰氏阳性菌中表达而设计的密码子优化荧光蛋白。

Codon-optimized fluorescent proteins designed for expression in low-GC gram-positive bacteria.

作者信息

Sastalla Inka, Chim Kannie, Cheung Gordon Y C, Pomerantsev Andrei P, Leppla Stephen H

机构信息

Laboratory of Bacterial Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 33, Bethesda, MD 20892-3202, USA.

出版信息

Appl Environ Microbiol. 2009 Apr;75(7):2099-110. doi: 10.1128/AEM.02066-08. Epub 2009 Jan 30.

Abstract

Fluorescent proteins have wide applications in biology. However, not all of these proteins are properly expressed in bacteria, especially if the codon usage and genomic GC content of the host organism are not ideal for high expression. In this study, we analyzed the DNA sequences of multiple fluorescent protein genes with respect to codons and GC content and compared them to a low-GC gram-positive bacterium, Bacillus anthracis. We found high discrepancies for cyan fluorescent protein (CFP), yellow fluorescent protein (YFP), and the photoactivatable green fluorescent protein (PAGFP), but not GFP, with regard to GC content and codon usage. Concomitantly, when the proteins were expressed in B. anthracis, CFP- and YFP-derived fluorescence was undetectable microscopically, a phenomenon caused not by lack of gene transcription or degradation of the proteins but by lack of protein expression. To improve expression in bacteria with low genomic GC contents, we synthesized a codon-optimized gfp and constructed optimized photoactivatable pagfp, cfp, and yfp, which were in contrast to nonoptimized genes highly expressed in B. anthracis and in another low-GC gram-positive bacterium, Staphylococcus aureus. Using optimized GFP as a reporter, we were able to monitor the activity of the protective antigen promoter of B. anthracis and confirm its dependence on bicarbonate and regulators present on virulence plasmid pXO1.

摘要

荧光蛋白在生物学中有着广泛的应用。然而,并非所有这些蛋白在细菌中都能正确表达,特别是当宿主生物的密码子使用情况和基因组GC含量不理想时,不利于高表达。在本研究中,我们分析了多个荧光蛋白基因的DNA序列的密码子和GC含量,并将它们与低GC含量的革兰氏阳性菌炭疽芽孢杆菌进行比较。我们发现,在GC含量和密码子使用方面,青色荧光蛋白(CFP)、黄色荧光蛋白(YFP)和光激活绿色荧光蛋白(PAGFP)存在很大差异,但绿色荧光蛋白(GFP)没有。同时,当这些蛋白在炭疽芽孢杆菌中表达时,显微镜下无法检测到CFP和YFP产生的荧光,这种现象不是由基因转录缺失或蛋白降解引起的,而是由蛋白表达缺失导致的。为了提高在基因组GC含量低的细菌中的表达,我们合成了密码子优化的gfp,并构建了优化的光激活pagfp、cfp和yfp,与未优化的基因相比,它们在炭疽芽孢杆菌和另一种低GC含量的革兰氏阳性菌金黄色葡萄球菌中均能高效表达。使用优化的GFP作为报告基因,我们能够监测炭疽芽孢杆菌保护性抗原启动子的活性,并证实其对毒力质粒pXO1上存在的碳酸氢盐和调节因子的依赖性。

相似文献

1
Codon-optimized fluorescent proteins designed for expression in low-GC gram-positive bacteria.
Appl Environ Microbiol. 2009 Apr;75(7):2099-110. doi: 10.1128/AEM.02066-08. Epub 2009 Jan 30.
2
Genetic tools to enhance the study of gene function and regulation in Staphylococcus aureus.
Appl Environ Microbiol. 2013 Apr;79(7):2218-24. doi: 10.1128/AEM.00136-13. Epub 2013 Jan 25.
3
Fluorescent reporters for studies of cellular localization of proteins in Staphylococcus aureus.
Appl Environ Microbiol. 2010 Jul;76(13):4346-53. doi: 10.1128/AEM.00359-10. Epub 2010 May 7.
4
Yeast-enhanced green fluorescent protein (yEGFP): a reporter of gene expression in Candida albicans.
Microbiology (Reading). 1997 Feb;143 ( Pt 2):303-311. doi: 10.1099/00221287-143-2-303.
5
Optimization of fluorescent tools for cell biology studies in Gram-positive bacteria.
PLoS One. 2014 Dec 2;9(12):e113796. doi: 10.1371/journal.pone.0113796. eCollection 2014.
9
Codon-improved fluorescent proteins in investigation of Staphylococcus aureus host pathogen interactions.
J Microbiol Methods. 2010 Oct;83(1):82-6. doi: 10.1016/j.mimet.2010.07.022. Epub 2010 Aug 11.

引用本文的文献

1
Rapid and Specific Detection of Using Phage Protein-Based Lateral Flow Assays.
ACS Appl Bio Mater. 2024 Nov 18;7(11):7292-7305. doi: 10.1021/acsabm.4c00965. Epub 2024 Nov 5.
2
Implementation of Fluorescent-Protein-Based Quantification Analysis in L-Form Bacteria.
Bioengineering (Basel). 2024 Jan 15;11(1):81. doi: 10.3390/bioengineering11010081.
3
Modulation of MRSA virulence gene expression by the wall teichoic acid enzyme TarO.
Nat Commun. 2023 Mar 22;14(1):1594. doi: 10.1038/s41467-023-37310-5.
4
Transcriptome features of innate immune memory in Drosophila.
PLoS Genet. 2022 Oct 17;18(10):e1010005. doi: 10.1371/journal.pgen.1010005. eCollection 2022 Oct.
5
Structural and Functional Analysis of Toxin and Small RNA Gene Promoter Regions in Bacillus anthracis.
J Bacteriol. 2022 Sep 20;204(9):e0020022. doi: 10.1128/jb.00200-22. Epub 2022 Aug 31.
6
Practical observations on the use of fluorescent reporter systems in Clostridioides difficile.
Antonie Van Leeuwenhoek. 2022 Feb;115(2):297-323. doi: 10.1007/s10482-021-01691-8. Epub 2022 Jan 18.
8
Microbial single-cell RNA sequencing by split-pool barcoding.
Science. 2021 Feb 19;371(6531). doi: 10.1126/science.aba5257. Epub 2020 Dec 17.
9
Bacillus anthracis Virulence Regulator AtxA Binds Specifically to the Promoter Region.
J Bacteriol. 2019 Nov 5;201(23). doi: 10.1128/JB.00569-19. Print 2019 Dec 1.
10
Composition of the Biofilm Matrix of Acneic Strain RT5.
Front Microbiol. 2019 Jun 21;10:1284. doi: 10.3389/fmicb.2019.01284. eCollection 2019.

本文引用的文献

2
Fluorescent proteins for photoactivation experiments.
Methods Cell Biol. 2008;85:45-61. doi: 10.1016/S0091-679X(08)85003-0.
3
Targeted gene disruption for the analysis of virulence of Staphylococcus aureus.
Methods Mol Biol. 2007;391:103-12. doi: 10.1007/978-1-59745-468-1_8.
4
FACS-isolation of Salmonella-infected cells with defined bacterial load from mouse spleen.
J Microbiol Methods. 2007 Dec;71(3):220-4. doi: 10.1016/j.mimet.2007.08.016. Epub 2007 Sep 11.
5
Expression and functional characterization of gfpmut3.1 and its unstable variants in Staphylococcus epidermidis.
J Microbiol Methods. 2007 Nov;71(2):123-32. doi: 10.1016/j.mimet.2007.08.015. Epub 2007 Sep 6.
6
Codon optimization of Bacillus licheniformis beta-1,3-1,4-glucanase gene and its expression in Pichia pastoris.
Appl Microbiol Biotechnol. 2007 Apr;74(5):1074-83. doi: 10.1007/s00253-006-0765-z. Epub 2007 Jan 11.
9
An excitable gene regulatory circuit induces transient cellular differentiation.
Nature. 2006 Mar 23;440(7083):545-50. doi: 10.1038/nature04588.
10
The uses of green fluorescent protein in prokaryotes.
Methods Biochem Anal. 2006;47:163-78.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验