Suppr超能文献

血氧水平依赖(BOLD)功能磁共振成像(fMRI)中低频漂移的生理起源。

Physiological origin of low-frequency drift in blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI).

作者信息

Yan Lirong, Zhuo Yan, Ye Yongquan, Xie Sharon X, An Jing, Aguirre Geoffrey K, Wang Jiongjiong

机构信息

State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.

出版信息

Magn Reson Med. 2009 Apr;61(4):819-27. doi: 10.1002/mrm.21902.

Abstract

We investigated the biophysical mechanism of low-frequency drift in blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) (0.00-0.01 Hz), by exploring its spatial distribution, dependence on imaging parameters, and relationship with task-induced brain activation. Cardiac and respiratory signals were concurrently recorded during MRI scanning and subsequently removed from MRI data. It was found that the spatial distribution of low-frequency drifts in human brain followed a tissue-specific pattern, with greater drift magnitude in the gray matter than in white matter. In gray matter, the dependence of drift magnitudes on TE was similar to that of task-induced BOLD signal changes, i.e., the absolute drift magnitude reached the maximum when TE approached T(2)* whereas relative drift magnitude increased linearly with TE. By systematically varying the flip angle, it was found that drift magnitudes possessed a positive dependence on image intensity. In phantom experiments, the observed drift was not only much smaller than that of human brain, but also showed different dependence on TE and flip angle. In fMRI studies with visual stimulation, a strong positive correlation between drift effects at baseline and task-induced BOLD signal changes was observed both across subjects and across activated pixels within individual participants. We further demonstrated that intrinsic, physiological drift effects are a major component of the spontaneous fluctuations of BOLD fMRI signal within the frequency range of 0.0-0.1 Hz. Our study supports brain physiology, as opposed to scanner instabilities or cardiac/respiratory pulsations, as the main source of low-frequency drifts in BOLD fMRI.

摘要

我们通过探究其空间分布、对成像参数的依赖性以及与任务诱发的大脑激活之间的关系,研究了血氧水平依赖(BOLD)功能磁共振成像(fMRI)中低频漂移(0.00 - 0.01 Hz)的生物物理机制。在MRI扫描过程中同时记录心脏和呼吸信号,随后从MRI数据中去除。研究发现,人类大脑中低频漂移的空间分布遵循组织特异性模式,灰质中的漂移幅度大于白质。在灰质中,漂移幅度对TE的依赖性与任务诱发的BOLD信号变化相似,即当TE接近T(2)*时,绝对漂移幅度达到最大值,而相对漂移幅度随TE呈线性增加。通过系统地改变翻转角,发现漂移幅度与图像强度呈正相关。在体模实验中,观察到的漂移不仅远小于人类大脑中的漂移,而且对TE和翻转角的依赖性也不同。在视觉刺激的fMRI研究中,在受试者之间以及个体参与者内的激活像素之间,均观察到基线时的漂移效应与任务诱发的BOLD信号变化之间存在强正相关。我们进一步证明,内在的生理漂移效应是0.0 - 0.1 Hz频率范围内BOLD fMRI信号自发波动的主要组成部分。我们的研究支持大脑生理学是BOLD fMRI中低频漂移的主要来源,而非扫描仪不稳定性或心脏/呼吸脉动。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验