Saraf Anita, Lozier Genevieve, Haesslein Andrea, Kasper F Kurtis, Raphael Robert M, Baggett L Scott, Mikos Antonios G
Department of Bioengineering, Rice University, Houston, Texas 77251-1892, USA.
Tissue Eng Part C Methods. 2009 Sep;15(3):333-344. doi: 10.1089/ten.tec.2008.0422.
There is a great need for biodegradable polymer scaffolds that can regulate the delivery of bioactive factors such as drugs, plasmids, and proteins. Coaxial electrospinning is a novel technique that is currently being explored to create such polymer scaffolds by embedding within them aqueous-based biological molecules. In this study, we evaluated the influence of various processing parameters such as sheath polymer concentration, core polymer concentration and molecular weight, and salt ions within the core polymer on coaxial fiber morphology. The sheath polymer used in this study was poly(e-caprolactone) (PCL), and the core polymer was poly(ethylene glycol) (PEG). We examined the effects of the various processing parameters on core diameters, total fiber diameters, and sheath thicknesses of coaxial microfibers using a 2(4) full factorial statistical model. The maximum increase in total fiber diameter was observed with increase in sheath polymer (PCL) concentration from 9 to 11 wt% (0.49+/-0.03 microm) and salt concentration within the core from 0 to 500 mM (0.38+/-0.03 microm). The core fiber diameter was most influenced by the sheath and core polymer (PCL and PEG, respectively) concentrations, the latter of which increased from 200 to 400 mg/mL (0.40+/-0.01 microm and 0.36+/-0.01 microm, respectively). The core polymer (PEG) concentration had a maximal negative effect on sheath thickness (0.40+/-0.03 microm), while salt concentration had the maximal positive effect (0.28+/-0.03 microm). Molecular weight increases in core polymer (PEG) from 1.0 to 4.6 kDa caused moderate increases in total and sheath fiber diameters and sheath thicknesses. These experiments provide important information that lays the foundation required for the synthesis of coaxial fibers with tunable dimensions.
对于可调节药物、质粒和蛋白质等生物活性因子递送的可生物降解聚合物支架有很大需求。同轴电纺丝是一种目前正在探索的新技术,通过将水基生物分子嵌入其中来制造此类聚合物支架。在本研究中,我们评估了各种加工参数,如鞘层聚合物浓度、核层聚合物浓度和分子量以及核层聚合物中的盐离子对同轴纤维形态的影响。本研究中使用的鞘层聚合物是聚(ε-己内酯)(PCL),核层聚合物是聚(乙二醇)(PEG)。我们使用2(4)全因子统计模型研究了各种加工参数对同轴微纤维的核直径、总纤维直径和鞘层厚度的影响。随着鞘层聚合物(PCL)浓度从9 wt%增加到11 wt%(0.49±0.03微米)以及核层中盐浓度从0增加到500 mM(0.38±0.03微米),观察到总纤维直径最大增加。核纤维直径受鞘层和核层聚合物(分别为PCL和PEG)浓度影响最大,后者分别从200 mg/mL增加到400 mg/mL(分别为0.40±0.01微米和0.36±0.01微米)。核层聚合物(PEG)浓度对鞘层厚度有最大的负面影响(0.40±0.03微米),而盐浓度有最大的正面影响(0.28±0.03微米)。核层聚合物(PEG)分子量从1.0 kDa增加到4.6 kDa导致总纤维直径和鞘层纤维直径以及鞘层厚度适度增加。这些实验提供了重要信息,为合成尺寸可调的同轴纤维奠定了所需的基础。