Suppr超能文献

致癌性表皮生长因子受体(EGFR)信号传导与肿瘤抑制基因功能丧失在胶质瘤发生过程中相互协作。

Oncogenic EGFR signaling cooperates with loss of tumor suppressor gene functions in gliomagenesis.

作者信息

Zhu Haihao, Acquaviva Jaime, Ramachandran Pranatartiharan, Boskovitz Abraham, Woolfenden Steve, Pfannl Rolf, Bronson Roderick T, Chen John W, Weissleder Ralph, Housman David E, Charest Al

机构信息

Molecular Oncology Research Institute, Department of Neurosurgery, Tufts University School of Medicine, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA.

出版信息

Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2712-6. doi: 10.1073/pnas.0813314106. Epub 2009 Feb 5.

Abstract

Glioblastoma multiforme (GBM) is a highly lethal brain tumor for which little treatment is available. The epidermal growth factor receptor (EGFR) signaling pathway is thought to play a crucial role in GBM pathogenesis, initiating the early stages of tumor development, sustaining tumor growth, promoting infiltration, and mediating resistance to therapy. The importance of this pathway is highlighted in the fact that EGFR is mutationally activated in over 50% of GBM tumors. Consistent with this, we show here that concomitant activation of wild-type and/or mutant (vIII) EGFR and ablation of Ink4A/Arf and PTEN tumor suppressor gene function in the adult mouse central nervous system generates a fully penetrant, rapid-onset high-grade malignant glioma phenotype with prominent pathological and molecular resemblance to GBM in humans. Studies of the activation of signaling events in these GBM tumor cells revealed notable differences between wild-type and vIII EGFR-expressing cells. We show that wild-type EGF receptor signals through its canonical pathways, whereas tumors arising from expression of mutant EGFR(vIII) do not use these same pathways. Our findings provide critical insights into the role of mutant EGFR signaling function in GBM tumor biology and set the stage for testing of targeted therapeutic agents in the preclinical models described herein.

摘要

多形性胶质母细胞瘤(GBM)是一种致死率很高的脑肿瘤,目前可用的治疗方法很少。表皮生长因子受体(EGFR)信号通路被认为在GBM发病机制中起关键作用,启动肿瘤发展的早期阶段,维持肿瘤生长,促进浸润,并介导对治疗的抗性。该通路的重要性体现在超过50%的GBM肿瘤中EGFR发生突变激活这一事实上。与此一致的是,我们在此表明,在成年小鼠中枢神经系统中野生型和/或突变型(vIII)EGFR的同时激活以及Ink4A/Arf和PTEN肿瘤抑制基因功能的缺失会产生一种完全显性、快速发作的高级别恶性胶质瘤表型,在病理和分子水平上与人类GBM有显著相似性。对这些GBM肿瘤细胞中信号事件激活的研究揭示了表达野生型和vIII EGFR的细胞之间的显著差异。我们表明野生型EGF受体通过其经典途径发出信号,而由突变型EGFR(vIII)表达产生的肿瘤不使用这些相同的途径。我们的发现为突变型EGFR信号功能在GBM肿瘤生物学中的作用提供了关键见解,并为在此描述的临床前模型中测试靶向治疗药物奠定了基础。

相似文献

1
Oncogenic EGFR signaling cooperates with loss of tumor suppressor gene functions in gliomagenesis.
Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2712-6. doi: 10.1073/pnas.0813314106. Epub 2009 Feb 5.
2
Chronic activation of wild-type epidermal growth factor receptor and loss of Cdkn2a cause mouse glioblastoma formation.
Cancer Res. 2011 Dec 1;71(23):7198-206. doi: 10.1158/0008-5472.CAN-11-1514. Epub 2011 Oct 10.
3
Resistance to EGF receptor inhibitors in glioblastoma mediated by phosphorylation of the PTEN tumor suppressor at tyrosine 240.
Proc Natl Acad Sci U S A. 2012 Aug 28;109(35):14164-9. doi: 10.1073/pnas.1211962109. Epub 2012 Aug 13.
4
HBEGF promotes gliomagenesis in the context of Ink4a/Arf and Pten loss.
Oncogene. 2017 Aug 10;36(32):4610-4618. doi: 10.1038/onc.2017.83. Epub 2017 Apr 3.
5
CDK4, CDK6, cyclin D1, p16(INK4a) and EGFR expression in glioblastoma with a primitive neuronal component.
J Neurooncol. 2018 Feb;136(3):445-452. doi: 10.1007/s11060-017-2674-7. Epub 2017 Nov 17.
6
Oncogenic EGFR signaling activates an mTORC2-NF-κB pathway that promotes chemotherapy resistance.
Cancer Discov. 2011 Nov;1(6):524-38. doi: 10.1158/2159-8290.CD-11-0124. Epub 2011 Sep 13.
7
Acquired MET expression confers resistance to EGFR inhibition in a mouse model of glioblastoma multiforme.
Oncogene. 2012 Jun 21;31(25):3039-50. doi: 10.1038/onc.2011.474. Epub 2011 Oct 24.
8
The novel Hsp90 inhibitor NXD30001 induces tumor regression in a genetically engineered mouse model of glioblastoma multiforme.
Mol Cancer Ther. 2010 Sep;9(9):2618-26. doi: 10.1158/1535-7163.MCT-10-0248. Epub 2010 Jul 19.
9
Molecular genetics of radiographically defined de novo glioblastoma multiforme.
Neuropathol Appl Neurobiol. 2000 Dec;26(6):544-52. doi: 10.1046/j.0305-1846.2000.00290.x.
10
MicroRNA-146a inhibits glioma development by targeting Notch1.
Mol Cell Biol. 2011 Sep;31(17):3584-92. doi: 10.1128/MCB.05821-11. Epub 2011 Jul 5.

引用本文的文献

1
Exploring the Role of ADCs in Brain Metastases and Primary Brain Tumors: Insight and Future Directions.
Cancers (Basel). 2025 May 7;17(9):1591. doi: 10.3390/cancers17091591.
2
Pleiotropic tumor suppressive functions of PTEN missense mutations during gliomagenesis.
iScience. 2024 Oct 28;27(12):111278. doi: 10.1016/j.isci.2024.111278. eCollection 2024 Dec 20.
3
Bridging the gap between tumor and disease: Innovating cancer and glioma models.
J Exp Med. 2025 Jan 6;222(1). doi: 10.1084/jem.20220808. Epub 2024 Dec 3.
4
Pre-Clinical Models for CAR T-Cell Therapy for Glioma.
Cells. 2024 Sep 4;13(17):1480. doi: 10.3390/cells13171480.
6
Role of renin angiotensin system inhibitors and metformin in Glioblastoma Therapy: a review.
Cancer Chemother Pharmacol. 2024 Jul;94(1):1-23. doi: 10.1007/s00280-024-04686-0. Epub 2024 Jun 25.
8
Glioblastoma modeling with 3D organoids: progress and challenges.
Oxf Open Neurosci. 2023 Jul 6;2:kvad008. doi: 10.1093/oons/kvad008. eCollection 2023.
10
Clinical advances in EGFR-TKI combination therapy for EGFR-mutated NSCLC: a narrative review.
Transl Cancer Res. 2023 Dec 31;12(12):3764-3778. doi: 10.21037/tcr-23-956. Epub 2023 Nov 24.

本文引用的文献

1
Comprehensive genomic characterization defines human glioblastoma genes and core pathways.
Nature. 2008 Oct 23;455(7216):1061-8. doi: 10.1038/nature07385. Epub 2008 Sep 4.
2
Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies.
Science. 2007 Oct 12;318(5848):287-90. doi: 10.1126/science.1142946. Epub 2007 Sep 13.
3
Quantitative analysis of EGFRvIII cellular signaling networks reveals a combinatorial therapeutic strategy for glioblastoma.
Proc Natl Acad Sci U S A. 2007 Jul 31;104(31):12867-72. doi: 10.1073/pnas.0705158104. Epub 2007 Jul 23.
4
Defining the role of mTOR in cancer.
Cancer Cell. 2007 Jul;12(1):9-22. doi: 10.1016/j.ccr.2007.05.008.
5
Dynamic control of signaling by modular adaptor proteins.
Curr Opin Cell Biol. 2007 Apr;19(2):112-6. doi: 10.1016/j.ceb.2007.02.013. Epub 2007 Feb 20.
6
PTEN-mediated resistance to epidermal growth factor receptor kinase inhibitors.
Clin Cancer Res. 2007 Jan 15;13(2 Pt 1):378-81. doi: 10.1158/1078-0432.CCR-06-1992.
7
The complexity of targeting EGFR signalling in cancer: from expression to turnover.
Biochim Biophys Acta. 2006 Aug;1766(1):120-39. doi: 10.1016/j.bbcan.2006.06.001. Epub 2006 Jun 23.
10
Cancer: crime and punishment.
Nature. 2005 Aug 4;436(7051):636-7. doi: 10.1038/436636a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验