Xu Huiping, Craig Bruce A
Department of Statistics, Purdue University, 150 N. University Street, West Lafayette, Indiana 47907, USA.
Biometrics. 2009 Dec;65(4):1145-55. doi: 10.1111/j.1541-0420.2008.01194.x.
Traditional latent class modeling has been widely applied to assess the accuracy of dichotomous diagnostic tests. These models, however, assume that the tests are independent conditional on the true disease status, which is rarely valid in practice. Alternative models using probit analysis have been proposed to incorporate dependence among tests, but these models consider restricted correlation structures. In this article, we propose a probit latent class model that allows a general correlation structure. When combined with some helpful diagnostics, this model provides a more flexible framework from which to evaluate the correlation structure and model fit. Our model encompasses several other PLC models but uses a parameter-expanded Monte Carlo EM algorithm to obtain the maximum-likelihood estimates. The parameter-expanded EM algorithm was designed to accelerate the convergence rate of the EM algorithm by expanding the complete-data model to include a larger set of parameters and it ensures a simple solution in fitting the PLC model. We demonstrate our estimation and model selection methods using a simulation study and two published medical studies.
传统的潜在类别建模已被广泛应用于评估二分诊断测试的准确性。然而,这些模型假设测试在真实疾病状态的条件下是独立的,而这在实际中很少成立。已提出使用概率分析的替代模型来纳入测试之间的相关性,但这些模型考虑的是受限的相关结构。在本文中,我们提出了一种允许一般相关结构的概率潜在类别模型。当与一些有用的诊断方法相结合时,该模型提供了一个更灵活的框架,可据此评估相关结构和模型拟合情况。我们的模型包含其他几个潜在类别模型,但使用参数扩展的蒙特卡罗期望最大化(EM)算法来获得最大似然估计。参数扩展的EM算法旨在通过扩展完全数据模型以包含更大的参数集来加速EM算法的收敛速度,并且它确保了在拟合潜在类别模型时的简单解决方案。我们通过模拟研究和两项已发表的医学研究展示了我们的估计和模型选择方法。