Suppr超能文献

甲萘醌的合成对于在指数生长期以及从非复制性持留状态恢复期间维持分枝杆菌的生存能力至关重要。

Menaquinone synthesis is critical for maintaining mycobacterial viability during exponential growth and recovery from non-replicating persistence.

作者信息

Dhiman Rakesh K, Mahapatra Sebabrata, Slayden Richard A, Boyne Melissa E, Lenaerts Anne, Hinshaw Jerald C, Angala Shiva K, Chatterjee Delphi, Biswas Kallolmay, Narayanasamy Prabagaran, Kurosu Michio, Crick Dean C

机构信息

Colorado State University, Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, 1682 Campus Delivery, Fort Collins, CO 80523, USA.

出版信息

Mol Microbiol. 2009 Apr;72(1):85-97. doi: 10.1111/j.1365-2958.2009.06625.x. Epub 2009 Feb 11.

Abstract

Understanding the basis of bacterial persistence in latent infections is critical for eradication of tuberculosis. Analysis of Mycobacterium tuberculosis mRNA expression in an in vitro model of non-replicating persistence indicated that the bacilli require electron transport chain components and ATP synthesis for survival. Additionally, low microM concentrations of aminoalkoxydiphenylmethane derivatives inhibited both the aerobic growth and survival of non-replicating, persistent M. tuberculosis. Metabolic labelling studies and quantification of cellular menaquinone levels suggested that menaquinone synthesis, and consequently electron transport, is the target of the aminoalkoxydiphenylmethane derivatives. This hypothesis is strongly supported by the observations that treatment with these compounds inhibits oxygen consumption and that supplementation of growth medium with exogenous menaquinone rescued both growth and oxygen consumption of treated bacilli. In vitro assays indicate that the aminoalkoxydiphenylmethane derivatives specifically inhibit MenA, an enzyme involved in the synthesis of menaquinone. Thus, the results provide insight into the physiology of mycobacterial persistence and a basis for the development of novel drugs that enhance eradication of persistent bacilli and latent tuberculosis.

摘要

了解细菌在潜伏感染中持续存在的基础对于根除结核病至关重要。在非复制性持续存在的体外模型中对结核分枝杆菌mRNA表达的分析表明,杆菌生存需要电子传递链成分和ATP合成。此外,低 microM 浓度的氨基烷氧基二苯甲烷衍生物可抑制非复制性、持续性结核分枝杆菌的有氧生长和存活。代谢标记研究和细胞甲萘醌水平的定量表明,甲萘醌合成以及因此的电子传递是氨基烷氧基二苯甲烷衍生物的靶点。这些化合物处理可抑制氧气消耗,以及用外源甲萘醌补充生长培养基可挽救处理后杆菌的生长和氧气消耗,这些观察结果有力地支持了这一假设。体外试验表明,氨基烷氧基二苯甲烷衍生物特异性抑制参与甲萘醌合成的MenA酶。因此,这些结果为分枝杆菌持续存在的生理学提供了见解,并为开发增强根除持续性杆菌和潜伏性结核病的新型药物奠定了基础。

相似文献

3
DosS responds to a reduced electron transport system to induce the Mycobacterium tuberculosis DosR regulon.
J Bacteriol. 2010 Dec;192(24):6447-55. doi: 10.1128/JB.00978-10. Epub 2010 Oct 15.
4
Mycobacterium tuberculosis gene expression during adaptation to stationary phase and low-oxygen dormancy.
Tuberculosis (Edinb). 2004;84(3-4):218-27. doi: 10.1016/j.tube.2004.02.003.
5
Dormant non-culturable Mycobacterium tuberculosis retains stable low-abundant mRNA.
BMC Genomics. 2015 Nov 16;16:954. doi: 10.1186/s12864-015-2197-6.
9
Allosteric regulation of menaquinone (vitamin K) biosynthesis in the human pathogen .
J Biol Chem. 2020 Mar 20;295(12):3759-3770. doi: 10.1074/jbc.RA119.012158. Epub 2020 Feb 6.
10
Gene expression profiling analysis of Mycobacterium tuberculosis genes in response to salicylate.
Arch Microbiol. 2005 Nov;184(3):152-7. doi: 10.1007/s00203-005-0037-9. Epub 2005 Nov 10.

引用本文的文献

1
ATP synthesis driven by atmospheric hydrogen concentrations.
Proc Natl Acad Sci U S A. 2025 Jul 29;122(30):e2506353122. doi: 10.1073/pnas.2506353122. Epub 2025 Jul 24.
3
Unraveling bacterial stress responses: implications for next-generation antimicrobial solutions.
World J Microbiol Biotechnol. 2024 Jul 29;40(9):285. doi: 10.1007/s11274-024-04090-z.
4
Gene Regulatory Mechanism of Mycobacterium Tuberculosis during Dormancy.
Curr Issues Mol Biol. 2024 Jun 11;46(6):5825-5844. doi: 10.3390/cimb46060348.
6
Unlocking Opportunities for and .
ACS Infect Dis. 2024 Feb 9;10(2):251-269. doi: 10.1021/acsinfecdis.3c00371. Epub 2024 Jan 31.
7
Making a chink in their armor: Current and next-generation antimicrobial strategies against the bacterial cell envelope.
Adv Microb Physiol. 2023;83:221-307. doi: 10.1016/bs.ampbs.2023.05.003. Epub 2023 Jun 27.
8
Structure of mycobacterial respiratory complex I.
Proc Natl Acad Sci U S A. 2023 Mar 28;120(13):e2214949120. doi: 10.1073/pnas.2214949120. Epub 2023 Mar 23.
10
Uncovering interactions between mycobacterial respiratory complexes to target drug-resistant .
Front Cell Infect Microbiol. 2022 Aug 24;12:980844. doi: 10.3389/fcimb.2022.980844. eCollection 2022.

本文引用的文献

1
The protonmotive force is required for maintaining ATP homeostasis and viability of hypoxic, nonreplicating Mycobacterium tuberculosis.
Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):11945-50. doi: 10.1073/pnas.0711697105. Epub 2008 Aug 12.
2
Diarylquinolines are bactericidal for dormant mycobacteria as a result of disturbed ATP homeostasis.
J Biol Chem. 2008 Sep 12;283(37):25273-25280. doi: 10.1074/jbc.M803899200. Epub 2008 Jul 14.
3
Selective killing of nonreplicating mycobacteria.
Cell Host Microbe. 2008 Mar 13;3(3):137-45. doi: 10.1016/j.chom.2008.02.003.
5
Diarylquinolines target subunit c of mycobacterial ATP synthase.
Nat Chem Biol. 2007 Jun;3(6):323-4. doi: 10.1038/nchembio884. Epub 2007 May 13.
6
Low-oxygen-recovery assay for high-throughput screening of compounds against nonreplicating Mycobacterium tuberculosis.
Antimicrob Agents Chemother. 2007 Apr;51(4):1380-5. doi: 10.1128/AAC.00055-06. Epub 2007 Jan 8.
7
Rapid microbiologic and pharmacologic evaluation of experimental compounds against Mycobacterium tuberculosis.
Antimicrob Agents Chemother. 2006 Apr;50(4):1245-50. doi: 10.1128/AAC.50.4.1245-1250.2006.
8
New insights into the function of granulomas in human tuberculosis.
J Pathol. 2006 Jan;208(2):261-9. doi: 10.1002/path.1906.
9
Differential antibiotic susceptibilities of starved Mycobacterium tuberculosis isolates.
Antimicrob Agents Chemother. 2005 Nov;49(11):4778-80. doi: 10.1128/AAC.49.11.4778-4780.2005.
10
Changes in energy metabolism of Mycobacterium tuberculosis in mouse lung and under in vitro conditions affecting aerobic respiration.
Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15629-34. doi: 10.1073/pnas.0507850102. Epub 2005 Oct 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验