Suppr超能文献

Analyzing microarray data with transitive directed acyclic graphs.

作者信息

Phan Vinhthuy, Olusegun George E, Tran Quynh T, Goodwin Shirlean, Bodreddigari Sridevi, Sutter Thomas R

机构信息

Department of Computer Science, The University of Memphis, Memphis, TN 38152, USA.

出版信息

J Bioinform Comput Biol. 2009 Feb;7(1):135-56. doi: 10.1142/s0219720009003972.

Abstract

Post hoc assignment of patterns determined by all pairwise comparisons in microarray experiments with multiple treatments has been proven to be useful in assessing treatment effects. We propose the usage of transitive directed acyclic graphs (tDAG) as the representation of these patterns and show that such representation can be useful in clustering treatment effects, annotating existing clustering methods, and analyzing sample sizes. Advantages of this approach include: (1) unique and descriptive meaning of each cluster in terms of how genes respond to all pairs of treatments; (2) insensitivity of the observed patterns to the number of genes analyzed; and (3) a combinatorial perspective to address the sample size problem by observing the rate of contractible tDAG as the number of replicates increases. The advantages and overall utility of the method in elaborating drug structure activity relationships are exemplified in a controlled study with real and simulated data.

摘要

相似文献

1
Analyzing microarray data with transitive directed acyclic graphs.
J Bioinform Comput Biol. 2009 Feb;7(1):135-56. doi: 10.1142/s0219720009003972.
2
Clustering and re-clustering for pattern discovery in gene expression data.
J Bioinform Comput Biol. 2005 Apr;3(2):281-301. doi: 10.1142/s0219720005001053.
3
Difference-based clustering of short time-course microarray data with replicates.
BMC Bioinformatics. 2007 Jul 14;8:253. doi: 10.1186/1471-2105-8-253.
4
Exact and heuristic algorithms for weighted cluster editing.
Comput Syst Bioinformatics Conf. 2007;6:391-401.
7
Subdimension-based similarity measure for DNA microarray data clustering.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Oct;74(4 Pt 1):041906. doi: 10.1103/PhysRevE.74.041906. Epub 2006 Oct 9.
8
Clustering of change patterns using Fourier coefficients.
Bioinformatics. 2008 Jan 15;24(2):184-91. doi: 10.1093/bioinformatics/btm568. Epub 2007 Nov 19.
9
How does gene expression clustering work?
Nat Biotechnol. 2005 Dec;23(12):1499-501. doi: 10.1038/nbt1205-1499.

引用本文的文献

1
Kynurenic Acid Protects against Thioacetamide-Induced Liver Injury in Rats.
Anal Cell Pathol (Amst). 2018 Sep 20;2018:1270483. doi: 10.1155/2018/1270483. eCollection 2018.
3
Exploiting dependencies of pairwise comparison outcomes to predict patterns of gene response.
BMC Bioinformatics. 2014;15 Suppl 11(Suppl 11):S2. doi: 10.1186/1471-2105-15-S11-S2. Epub 2014 Oct 21.
4
Clustering of High Throughput Gene Expression Data.
Comput Oper Res. 2012 Dec;39(12):3046-3061. doi: 10.1016/j.cor.2012.03.008.

本文引用的文献

2
Quick calculation for sample size while controlling false discovery rate with application to microarray analysis.
Bioinformatics. 2007 Mar 15;23(6):739-46. doi: 10.1093/bioinformatics/btl664. Epub 2007 Jan 19.
5
Tight clustering: a resampling-based approach for identifying stable and tight patterns in data.
Biometrics. 2005 Mar;61(1):10-6. doi: 10.1111/j.0006-341X.2005.031032.x.
6
Microarray experimental design: power and sample size considerations.
Physiol Genomics. 2003 Dec 16;16(1):24-8. doi: 10.1152/physiolgenomics.00037.2003.
8
Modified nonparametric approaches to detecting differentially expressed genes in replicated microarray experiments.
Bioinformatics. 2003 Jun 12;19(9):1046-54. doi: 10.1093/bioinformatics/btf879.
9
Statistical tests for differential expression in cDNA microarray experiments.
Genome Biol. 2003;4(4):210. doi: 10.1186/gb-2003-4-4-210. Epub 2003 Mar 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验