Suppr超能文献

超声造影微泡在成像与治疗中的应用:物理原理与工程学

Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering.

作者信息

Qin Shengping, Caskey Charles F, Ferrara Katherine W

机构信息

Department of Biomedical Engineering, University of California, 451 East Health Sciences Drive, Davis, CA 95616, USA.

出版信息

Phys Med Biol. 2009 Mar 21;54(6):R27-57. doi: 10.1088/0031-9155/54/6/R01. Epub 2009 Feb 19.

Abstract

Microbubble contrast agents and the associated imaging systems have developed over the past 25 years, originating with manually-agitated fluids introduced for intra-coronary injection. Over this period, stabilizing shells and low diffusivity gas materials have been incorporated in microbubbles, extending stability in vitro and in vivo. Simultaneously, the interaction of these small gas bubbles with ultrasonic waves has been extensively studied, resulting in models for oscillation and increasingly sophisticated imaging strategies. Early studies recognized that echoes from microbubbles contained frequencies that are multiples of the microbubble resonance frequency. Although individual microbubble contrast agents cannot be resolved-given that their diameter is on the order of microns-nonlinear echoes from these agents are used to map regions of perfused tissue and to estimate the local microvascular flow rate. Such strategies overcome a fundamental limitation of previous ultrasound blood flow strategies; the previous Doppler-based strategies are insensitive to capillary flow. Further, the insonation of resonant bubbles results in interesting physical phenomena that have been widely studied for use in drug and gene delivery. Ultrasound pressure can enhance gas diffusion, rapidly fragment the agent into a set of smaller bubbles or displace the microbubble to a blood vessel wall. Insonation of a microbubble can also produce liquid jets and local shear stress that alter biological membranes and facilitate transport. In this review, we focus on the physical aspects of these agents, exploring microbubble imaging modes, models for microbubble oscillation and the interaction of the microbubble with the endothelium.

摘要

在过去25年中,微泡造影剂及相关成像系统不断发展,最初是用于冠状动脉内注射的手动搅拌液体。在此期间,微泡中加入了稳定壳层和低扩散性气体材料,从而延长了其在体外和体内的稳定性。同时,人们对这些小气泡与超声波的相互作用进行了广泛研究,得出了振荡模型和日益复杂的成像策略。早期研究认识到,微泡回声包含微泡共振频率的倍数频率。尽管由于微泡造影剂的直径在微米量级,单个微泡造影剂无法分辨,但这些造影剂的非线性回声可用于绘制灌注组织区域并估计局部微血管流速。此类策略克服了以往超声血流策略的一个基本局限;以往基于多普勒的策略对毛细血管血流不敏感。此外,共振气泡的声作用会产生有趣的物理现象,这些现象已被广泛研究用于药物和基因递送。超声压力可增强气体扩散,使造影剂迅速破碎成一组较小的气泡,或将微泡驱赶到血管壁。微泡的声作用还可产生液体射流和局部剪切应力,从而改变生物膜并促进物质运输。在本综述中,我们聚焦于这些造影剂的物理特性,探讨微泡成像模式、微泡振荡模型以及微泡与内皮细胞的相互作用。

相似文献

1
Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering.
Phys Med Biol. 2009 Mar 21;54(6):R27-57. doi: 10.1088/0031-9155/54/6/R01. Epub 2009 Feb 19.
2
Lipid-shelled vehicles: engineering for ultrasound molecular imaging and drug delivery.
Acc Chem Res. 2009 Jul 21;42(7):881-92. doi: 10.1021/ar8002442.
3
Ultrasound contrast agents: basic principles.
Eur J Radiol. 1998 May;27 Suppl 2:S157-60. doi: 10.1016/s0720-048x(98)00057-6.
4
Enhanced microbubble contrast agent oscillation following 250 kHz insonation.
Sci Rep. 2018 Nov 5;8(1):16347. doi: 10.1038/s41598-018-34494-5.
5
Advances in ultrasound mediated gene therapy using microbubble contrast agents.
Theranostics. 2012;2(12):1208-22. doi: 10.7150/thno.4306. Epub 2012 Dec 31.
6
Effect of microbubble size on fundamental mode high frequency ultrasound imaging in mice.
Ultrasound Med Biol. 2010 Jun;36(6):935-48. doi: 10.1016/j.ultrasmedbio.2010.03.015. Epub 2010 May 5.
7
Observation of contrast agent response to chirp insonation with a simultaneous optical-acoustical system.
IEEE Trans Ultrason Ferroelectr Freq Control. 2006 Jun;53(6):1130-7. doi: 10.1109/tuffc.2006.1642511.
8
Nonlinear propagation of ultrasound through microbubble contrast agents and implications for imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2006 Dec;53(12):2406-15. doi: 10.1109/tuffc.2006.189.
9
Interaction of an ultrasound-activated contrast microbubble with a wall at arbitrary separation distances.
Phys Med Biol. 2015 Oct 21;60(20):7909-25. doi: 10.1088/0031-9155/60/20/7909. Epub 2015 Sep 25.
10
Leveraging the power of ultrasound for therapeutic design and optimization.
J Control Release. 2011 Dec 20;156(3):297-306. doi: 10.1016/j.jconrel.2011.07.032. Epub 2011 Jul 30.

引用本文的文献

1
Dissipative Particle Dynamics Models of Encapsulated Microbubbles and Nanoscale Gas Vesicles for Biomedical Ultrasound Simulations.
ACS Appl Nano Mater. 2025 Aug 4;8(32):16053-16070. doi: 10.1021/acsanm.5c02783. eCollection 2025 Aug 15.
2
Harnessing chemically crosslinked microbubble clusters using deep learning for ultrasound contrast imaging.
J Med Imaging (Bellingham). 2025 Jul;12(4):047001. doi: 10.1117/1.JMI.12.4.047001. Epub 2025 Jul 12.
4
Ultrasound-stimulated Microbubbles for Treatment of Pancreatic Cancer Cells with Radiation and Nanoparticles: Study.
J Med Phys. 2024 Jul-Sep;49(3):326-334. doi: 10.4103/jmp.jmp_30_24. Epub 2024 Sep 21.
5
Focused Ultrasound: Noninvasive Image-Guided Therapy.
Invest Radiol. 2025 Mar 1;60(3):205-219. doi: 10.1097/RLI.0000000000001116. Epub 2024 Aug 21.
6
Determining Ultrasound Parameters for Bursting Polymer Microbubbles for Future Use in Spinal Cord Injury.
Ultrasound Med Biol. 2024 Jun;50(6):888-897. doi: 10.1016/j.ultrasmedbio.2024.02.014. Epub 2024 Mar 22.
7
Hemoglobin Microbubbles and the Prediction of Different Oxygen Levels Using RF Data and Deep Learning.
Proc SPIE Int Soc Opt Eng. 2023 Feb;12470. doi: 10.1117/12.2655121. Epub 2023 Apr 10.
8
Smart nanogels for cancer treatment from the perspective of functional groups.
Front Bioeng Biotechnol. 2024 Jan 10;11:1329311. doi: 10.3389/fbioe.2023.1329311. eCollection 2023.
9
Remote Loading: The Missing Piece for Achieving High Drug Payload and Rapid Release in Polymeric Microbubbles.
Pharmaceutics. 2023 Oct 28;15(11):2550. doi: 10.3390/pharmaceutics15112550.
10
Sono-processes: Emerging systems and their applicability within the (bio-)medical field.
Ultrason Sonochem. 2023 Nov;100:106630. doi: 10.1016/j.ultsonch.2023.106630. Epub 2023 Oct 4.

本文引用的文献

1
Spatio-temporal dynamics of an encapsulated gas bubble in an ultrasound field.
J Acoust Soc Am. 2006 Aug;120(2):661-669. doi: 10.1121/1.2215228.
2
Dual-targeted contrast agent for US assessment of tumor angiogenesis in vivo.
Radiology. 2008 Sep;248(3):936-44. doi: 10.1148/radiol.2483072231.
3
Myocardial contrast echocardiography: a 25-year retrospective.
Circulation. 2008 Jul 15;118(3):291-308. doi: 10.1161/CIRCULATIONAHA.107.747303.
4
SURF imaging: in vivo demonstration of an ultrasound contrast agent detection technique.
IEEE Trans Ultrason Ferroelectr Freq Control. 2008 May;55(5):1112-21. doi: 10.1109/TUFFC.2008.763.
6
Frequency dependence of kidney injury induced by contrast-aided diagnostic ultrasound in rats.
Ultrasound Med Biol. 2008 Oct;34(10):1678-87. doi: 10.1016/j.ultrasmedbio.2008.03.001. Epub 2008 May 15.
7
Interaction of microbubbles with high intensity pulsed ultrasound.
J Acoust Soc Am. 2008 Mar;123(3):1784-93. doi: 10.1121/1.2836746.
8
Imaging of angiogenesis using Cadence contrast pulse sequencing and targeted contrast agents.
Contrast Media Mol Imaging. 2008 Jan-Feb;3(1):9-18. doi: 10.1002/cmmi.224.
9
In vitro characterization of the subharmonic ultrasound signal from Definity microbubbles at high frequencies.
Phys Med Biol. 2008 Mar 7;53(5):1209-23. doi: 10.1088/0031-9155/53/5/004. Epub 2008 Feb 11.
10
Radial modulation imaging of microbubble contrast agents at high frequency.
Ultrasound Med Biol. 2008 Jun;34(6):949-62. doi: 10.1016/j.ultrasmedbio.2007.11.017. Epub 2008 Feb 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验