Suppr超能文献

脊柱颈部几何结构决定了在存在可移动内源性钙结合蛋白的情况下树突棘与树突之间的相互作用。

Spine neck geometry determines spino-dendritic cross-talk in the presence of mobile endogenous calcium binding proteins.

作者信息

Schmidt Hartmut, Eilers Jens

机构信息

Carl-Ludwig Institut für Physiologie, Abteilung II, Liebigstr. 27, 04103, Leipzig, Germany.

出版信息

J Comput Neurosci. 2009 Oct;27(2):229-43. doi: 10.1007/s10827-009-0139-5. Epub 2009 Feb 20.

Abstract

Dendritic spines are thought to compartmentalize second messengers like Ca2+. The notion of isolated spine signaling, however, was challenged by the recent finding that under certain conditions mobile endogenous Ca(2+)-binding proteins may break the spine limit and lead to activation of Ca(2+)-dependent dendritic signaling cascades. Since the size of spines is variable, the spine neck may be an important regulator of this spino-dendritic crosstalk. We tested this hypothesis by using an experimentally defined, kinetic computer model in which spines of Purkinje neurons were coupled to their parent dendrite by necks of variable geometry. We show that Ca2+ signaling and calmodulin activation in spines with long necks is essentially isolated from the dendrite, while stubby spines show a strong coupling with their dendrite, mediated particularly by calbindin D28k. We conclude that the spine neck geometry, in close interplay with mobile Ca(2+)-binding proteins, regulates the spino-dendritic crosstalk.

摘要

树突棘被认为可将诸如Ca2+等第二信使分隔开来。然而,孤立的棘信号传导这一概念受到了最近一项发现的挑战,即在某些条件下,移动的内源性Ca(2+)结合蛋白可能会突破棘的限制,并导致Ca(2+)依赖性树突信号级联反应的激活。由于棘的大小是可变的,棘颈可能是这种棘-树突串扰的重要调节因子。我们通过使用一个实验定义的动力学计算机模型来检验这一假设,在该模型中,浦肯野神经元的棘通过具有可变几何形状的颈部与其母树突相连。我们发现,具有长颈部的棘中的Ca2+信号传导和钙调蛋白激活基本上与树突隔离,而粗短的棘则与其树突有强烈的耦合,特别是由钙结合蛋白D28k介导。我们得出结论,棘颈几何形状与移动的Ca(2+)结合蛋白密切相互作用,调节着棘-树突串扰。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验