Suppr超能文献

交错式平衡稳态自由进动成像:利用梯度波形分组减少伪影

Interleaved balanced SSFP imaging: artifact reduction using gradient waveform grouping.

作者信息

Nielsen Jon-Fredrik, Nayak Krishna S

机构信息

Magnetic Resonance Engineering Laboratory, Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089-2564, USA.

出版信息

J Magn Reson Imaging. 2009 Mar;29(3):745-50. doi: 10.1002/jmri.21628.

Abstract

PURPOSE

To analyze steady-state signal distortions in interleaved balanced steady-state free precession (bSSFP) caused by slightly unbalanced eddy-current fields and develop a general strategy for mitigating these artifacts.

MATERIALS AND METHODS

We considered bSSFP sequences in which two gradient waveforms are interleaved in a "groupwise" fashion, ie, each waveform is executed consecutively two or more times before switching to the other waveform (we let "N" count the number of times each waveform is executed consecutively). The steady-state signal profile over the bSSFP passband was calculated using numerical Bloch simulations and measured experimentally in a uniform phantom. The proposed "grouped" interleaved bSSFP strategy was applied to cardiac velocity mapping using interleaved phase-contrast imaging with N=2 and N=6 in one healthy volunteer.

RESULTS

Simulation and phantom measurements show that signal distortions are systematically reduced with increasing grouping number N. For most tissues, significant suppression was achieved with N=4, and increasing N beyond this value produced only marginal gains. However, signal distortions for blood remain relatively high even for N>4. In vivo cardiac velocity mapping using interleaved phase-contrast imaging with N=6 demonstrated reduced image artifact levels compared to the N=2 acquisition.

CONCLUSION

Gradient waveform "grouping" offers a simple and general strategy for mitigating steady-state eddy-current distortions in bSSFP sequences that interleave two different gradients. Blood exhibits significant distortion even with "grouping," which is a major obstacle for cardiovascular bSSFP approaches that interleave multiple gradient waveforms. The grouping concept may also benefit applications that acquire images during the transient approach to steady state.

摘要

目的

分析由轻微不平衡的涡流场引起的交错式平衡稳态自由进动(bSSFP)中的稳态信号失真,并制定减轻这些伪影的通用策略。

材料与方法

我们考虑了bSSFP序列,其中两个梯度波形以“分组”方式交错,即每个波形在切换到另一个波形之前连续执行两次或更多次(我们用“N”表示每个波形连续执行的次数)。使用数值布洛赫模拟计算bSSFP通带内的稳态信号分布,并在均匀体模中进行实验测量。将提出的“分组”交错bSSFP策略应用于心脏速度映射,在一名健康志愿者中使用交错相位对比成像,N = 2和N = 6。

结果

模拟和体模测量表明,随着分组数N的增加,信号失真会系统性降低。对于大多数组织,N = 4时可实现显著抑制,超过此值增加N只会带来边际收益。然而,即使N > 4,血液的信号失真仍然相对较高。使用N = 6的交错相位对比成像进行体内心脏速度映射显示,与N = 2采集相比,图像伪影水平降低。

结论

梯度波形“分组”为减轻交错两个不同梯度的bSSFP序列中的稳态涡流失真提供了一种简单通用的策略。即使采用“分组”,血液仍表现出显著失真,这是交错多个梯度波形的心血管bSSFP方法的主要障碍。分组概念也可能有益于在接近稳态的瞬态过程中采集图像的应用。

相似文献

1
Interleaved balanced SSFP imaging: artifact reduction using gradient waveform grouping.
J Magn Reson Imaging. 2009 Mar;29(3):745-50. doi: 10.1002/jmri.21628.
2
Interleaved, undersampled radial multiple-acquisition steady-state free precession for improved left atrial cine imaging.
Magn Reson Med. 2020 May;83(5):1721-1729. doi: 10.1002/mrm.28036. Epub 2019 Oct 12.
4
Mitigation of near-band balanced steady-state free precession through-plane flow artifacts using partial dephasing.
Magn Reson Med. 2018 Jun;79(6):2944-2953. doi: 10.1002/mrm.26957. Epub 2017 Oct 10.
6
Balanced SSFP-like steady-state imaging using small-tip fast recovery with a spectral prewinding pulse.
Magn Reson Med. 2016 Feb;75(2):839-44. doi: 10.1002/mrm.25682. Epub 2015 Mar 29.
8
Positive susceptibility-based contrast imaging with dephased balanced steady-state free precession.
Magn Reson Med. 2025 Jul;94(1):59-72. doi: 10.1002/mrm.30421. Epub 2025 Mar 13.

引用本文的文献

1
Prospective GIRF-based RF phase cycling to reduce eddy current-induced steady-state disruption in bSSFP imaging.
Magn Reson Med. 2020 Jul;84(1):115-127. doi: 10.1002/mrm.28097. Epub 2019 Nov 22.
4
Pseudo-projection-driven, self-gated cardiac cine imaging using cartesian golden step phase encoding.
Magn Reson Med. 2016 Aug;76(2):417-29. doi: 10.1002/mrm.25834. Epub 2015 Oct 31.
5
Physiological and Functional Magnetic Resonance Imaging Using Balanced Steady-state Free Precession.
Korean J Radiol. 2015 May-Jun;16(3):550-9. doi: 10.3348/kjr.2015.16.3.550. Epub 2015 May 13.
6
Steady-state functional MRI using spoiled small-tip fast recovery imaging.
Magn Reson Med. 2015 Feb;73(2):536-43. doi: 10.1002/mrm.25146. Epub 2014 Mar 11.

本文引用的文献

1
Pulse sequences for phase-contrast SSFP imaging from a single steady-state.
Proc Int Soc Magn Reson Med Sci Meet Exhib Int Soc Magn Reson Med Sci Meet Exhib. 2006 May;14:879.
2
Oscillating steady states.
Magn Reson Med. 2006 Mar;55(3):598-603. doi: 10.1002/mrm.20795.
4
Flow compensation in balanced SSFP sequences.
Magn Reson Med. 2005 Oct;54(4):901-7. doi: 10.1002/mrm.20619.
5
T1, T2 relaxation and magnetization transfer in tissue at 3T.
Magn Reson Med. 2005 Sep;54(3):507-12. doi: 10.1002/mrm.20605.
6
In-plane velocity encoding with coherent steady-state imaging.
Magn Reson Med. 2005 Jul;54(1):138-45. doi: 10.1002/mrm.20526.
7
Analysis and compensation of eddy currents in balanced SSFP.
Magn Reson Med. 2005 Jul;54(1):129-37. doi: 10.1002/mrm.20527.
9
Simplified model and stabilization of SSFP sequences.
J Magn Reson. 2003 Jul;163(1):23-37. doi: 10.1016/s1090-7807(03)00115-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验