Suppr超能文献

雌激素受体状态与增殖在预测乳腺癌新辅助化疗反应及长期预后中的关系。

Relationship between oestrogen receptor status and proliferation in predicting response and long-term outcome to neoadjuvant chemotherapy for breast cancer.

作者信息

Jones Robin L, Salter Janine, A'Hern Roger, Nerurkar Ash, Parton Marina, Reis-Filho Jorge S, Smith Ian E, Dowsett Mitchell

机构信息

Academic Department of Biochemistry, Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK.

出版信息

Breast Cancer Res Treat. 2010 Jan;119(2):315-23. doi: 10.1007/s10549-009-0329-x. Epub 2009 Feb 27.

Abstract

Oestrogen receptor (ER) negative breast cancers are more likely to achieve a pathological complete response (pCR) to neoadjuvant chemotherapy compared to those with ER positive tumours. ER positive tumours exhibit low proliferation and ER negative cancers high proliferation. The aim of this study was to determine to what extent the better response of ER negative cancers correlates with proliferation rate. A retrospective analysis of a prospectively maintained database identified 175 neoadjuvant chemotherapy patients with tissue available for Ki67 analysis. On univariate analysis, pre-therapy Ki67 (P = 0.04), ER status (P = 0.002), HER2 status (P = 0.004) and grade (P = 0.0009) were associated with a pCR. In a multivariate model, HER2 was the only significant predictor of pCR. No significant relationship between pre-therapy Ki67 and relapse-free and overall survival was demonstrated. Ki67 is not an independent predictor of clinical CR or pCR. Aspects of ER status beyond its inverse relationship with proliferation may contribute to its predictive value for pCR.

摘要

与雌激素受体(ER)阳性肿瘤患者相比,ER阴性乳腺癌患者接受新辅助化疗后更有可能实现病理完全缓解(pCR)。ER阳性肿瘤增殖率低,而ER阴性癌症增殖率高。本研究的目的是确定ER阴性癌症更好的反应与增殖率之间的相关程度。对一个前瞻性维护的数据库进行回顾性分析,确定了175例有组织可用于Ki67分析的新辅助化疗患者。单因素分析显示,治疗前Ki67(P = 0.04)、ER状态(P = 0.002)、HER2状态(P = 0.004)和分级(P = 0.0009)与pCR相关。在多变量模型中,HER2是pCR的唯一显著预测因素。未证明治疗前Ki67与无复发生存期和总生存期之间存在显著关系。Ki67不是临床CR或pCR的独立预测因素。ER状态除了与增殖呈负相关外,其其他方面可能有助于其对pCR的预测价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验