Pipirou Zoi, Guallar Victor, Basran Jaswir, Metcalfe Clive L, Murphy Emma J, Bottrill Andrew R, Mistry Sharad C, Raven Emma Lloyd
Department of Chemistry, University of Leicester, England, UK.
Biochemistry. 2009 Apr 28;48(16):3593-9. doi: 10.1021/bi802210g.
Ascorbate peroxidase (APX), cytochrome c peroxidase (CcP), and the catalase-peroxidases (KatG) share very similar active site structures and are distinguished from other peroxidases by the presence of a distal tryptophan residue. In KatG, this distal tryptophan forms a covalent link to an adjacent tyrosine residue, which in turn links to a methionine residue. We have previously shown [ Pipirou, Z. et al. ( 2007 ) Biochemistry 46 , 2174 - 2180 ] that reaction of APX with peroxide leads, over long time scales, to formation of a covalent link with the distal tryptophan (Trp41) in a mechanism that proceeds through initial formation of a compound I species bearing a porphyrin pi-cation radical followed by radical formation on Trp41, as implicated in the KatG enzymes. Formation of such a covalent link in CcP has never been reported, and we proposed that this could be because compound I in CcP uses Trp191 instead of a porphyrin pi-cation radical. To test this, we have examined the reactivity of the W191F variant of CcP with H(2)O(2), in which formation of a porphyrin pi-cation radical occurs. We show, using electronic spectroscopy, HPLC, and mass spectroscopy, that in W191F partial formation of a covalent link from Trp51 to the heme is observed, as in APX. Radical formation on Trp51, as seen for KatG and APX, is implicated; this is supported by QM/MM calculations. Collectively, the data show that all three members of the class I heme peroxidases can support radical formation on the distal tryptophan and that the reactivity of this radical can be controlled either by the protein structure or by the nature of the compound I intermediate.
抗坏血酸过氧化物酶(APX)、细胞色素c过氧化物酶(CcP)和过氧化氢酶过氧化物酶(KatG)具有非常相似的活性位点结构,并且通过存在一个远端色氨酸残基与其他过氧化物酶相区分。在KatG中,这个远端色氨酸与相邻的酪氨酸残基形成共价连接,而该酪氨酸残基又与一个甲硫氨酸残基相连。我们之前已经表明[Pipirou, Z.等人(2007年)《生物化学》46卷,2174 - 2180页],APX与过氧化物的反应在长时间尺度上会导致与远端色氨酸(Trp41)形成共价连接,其机制是通过最初形成带有卟啉π-阳离子自由基的化合物I物种,随后在Trp41上形成自由基,这与KatG酶的情况类似。CcP中从未报道过形成这样的共价连接,我们推测这可能是因为CcP中的化合物I使用Trp191而不是卟啉π-阳离子自由基。为了验证这一点,我们研究了CcP的W191F变体与H₂O₂的反应活性,其中会发生卟啉π-阳离子自由基的形成。我们使用电子光谱、高效液相色谱和质谱表明,在W191F中,观察到了从Trp51到血红素的共价连接的部分形成,就像在APX中一样。与KatG和APX中所见类似,Trp51上形成了自由基;量子力学/分子力学计算支持了这一点。总体而言,数据表明I类血红素过氧化物酶的所有三个成员都能支持远端色氨酸上的自由基形成,并且该自由基的反应活性可以通过蛋白质结构或化合物I中间体的性质来控制。