Suppr超能文献

凝缩蛋白调节脊椎动物着丝粒的硬度。

Condensin regulates the stiffness of vertebrate centromeres.

作者信息

Ribeiro Susana A, Gatlin Jesse C, Dong Yimin, Joglekar Ajit, Cameron Lisa, Hudson Damien F, Farr Christine J, McEwen Bruce F, Salmon Edward D, Earnshaw William C, Vagnarelli Paola

机构信息

Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom.

出版信息

Mol Biol Cell. 2009 May;20(9):2371-80. doi: 10.1091/mbc.e08-11-1127. Epub 2009 Mar 4.

Abstract

When chromosomes are aligned and bioriented at metaphase, the elastic stretch of centromeric chromatin opposes pulling forces exerted on sister kinetochores by the mitotic spindle. Here we show that condensin ATPase activity is an important regulator of centromere stiffness and function. Condensin depletion decreases the stiffness of centromeric chromatin by 50% when pulling forces are applied to kinetochores. However, condensin is dispensable for the normal level of compaction (rest length) of centromeres, which probably depends on other factors that control higher-order chromatin folding. Kinetochores also do not require condensin for their structure or motility. Loss of stiffness caused by condensin-depletion produces abnormal uncoordinated sister kinetochore movements, leads to an increase in Mad2(+) kinetochores near the metaphase plate and delays anaphase onset.

摘要

当染色体在中期排列并双定向时,着丝粒染色质的弹性拉伸会对抗有丝分裂纺锤体施加在姐妹动粒上的拉力。我们在此表明,凝聚素ATP酶活性是着丝粒硬度和功能的重要调节因子。当对着丝粒施加拉力时,凝聚素缺失会使着丝粒染色质的硬度降低50%。然而,凝聚素对于着丝粒正常水平的压缩(静止长度)并非必需,这可能取决于控制高阶染色质折叠的其他因素。动粒的结构或运动性也不需要凝聚素。凝聚素缺失导致的硬度丧失会产生异常的、不协调的姐妹动粒运动,导致中期板附近Mad2(+)动粒增加,并延迟后期开始。

相似文献

1
Condensin regulates the stiffness of vertebrate centromeres.
Mol Biol Cell. 2009 May;20(9):2371-80. doi: 10.1091/mbc.e08-11-1127. Epub 2009 Mar 4.
2
Chromatin compaction by condensin I, intra-kinetochore stretch and tension, and anaphase onset, in collective spindle assembly checkpoint interaction.
J Phys Condens Matter. 2014 Apr 16;26(15):155102. doi: 10.1088/0953-8984/26/15/155102. Epub 2014 Mar 27.
5
The regulation of chromosome segregation via centromere loops.
Crit Rev Biochem Mol Biol. 2019 Aug;54(4):352-370. doi: 10.1080/10409238.2019.1670130. Epub 2019 Oct 1.
7
Monopolin recruits condensin to organize centromere DNA and repetitive DNA sequences.
Mol Biol Cell. 2013 Sep;24(18):2807-19. doi: 10.1091/mbc.E13-05-0229. Epub 2013 Jul 24.
9
Condensin association with histone H2A shapes mitotic chromosomes.
Nature. 2011 Jun 1;474(7352):477-83. doi: 10.1038/nature10179.
10
HJURP interaction with the condensin II complex during G1 promotes CENP-A deposition.
Mol Biol Cell. 2017 Jan 1;28(1):54-64. doi: 10.1091/mbc.E15-12-0843. Epub 2016 Nov 2.

引用本文的文献

1
DNA methylation influences human centromere positioning and function.
Nat Genet. 2025 Sep 4. doi: 10.1038/s41588-025-02324-w.
2
ZSCAN4 functions as a safeguard to maintain centromere integrity during oocyte meiosis.
Genome Biol. 2025 Jul 15;26(1):204. doi: 10.1186/s13059-025-03687-3.
3
A tribute to 40 years of CENP-A & centromere pioneer Bill Earnshaw.
Chromosoma. 2025 Jul 9;134(1):7. doi: 10.1007/s00412-025-00833-5.
4
Emerging Roles for Transcription Factors During Mitosis.
Cells. 2025 Feb 12;14(4):263. doi: 10.3390/cells14040263.
6
Independence of centromeric and pericentromeric chromatin stability on CCAN components.
Mol Biol Cell. 2025 Apr 1;36(4):ar41. doi: 10.1091/mbc.E24-02-0066. Epub 2025 Feb 12.
8
Molecular mechanism targeting condensin for chromosome condensation.
EMBO J. 2025 Feb;44(3):705-735. doi: 10.1038/s44318-024-00336-6. Epub 2024 Dec 17.
9
Force generation and resistance in human mitosis.
Biophys Rev. 2024 Sep 28;16(5):551-562. doi: 10.1007/s12551-024-01235-0. eCollection 2024 Oct.
10
Chromosome segregation: Brushing up on centromeres.
Curr Biol. 2024 Jun 17;34(12):R565-R567. doi: 10.1016/j.cub.2024.04.074.

本文引用的文献

1
Releasing the spindle assembly checkpoint without tension.
J Cell Biol. 2009 Feb 9;184(3):355-6. doi: 10.1083/jcb.200812016. Epub 2009 Feb 3.
2
Intrakinetochore stretch is associated with changes in kinetochore phosphorylation and spindle assembly checkpoint activity.
J Cell Biol. 2009 Feb 9;184(3):373-81. doi: 10.1083/jcb.200808130. Epub 2009 Feb 3.
3
Kinetochore stretching inactivates the spindle assembly checkpoint.
J Cell Biol. 2009 Feb 9;184(3):383-90. doi: 10.1083/jcb.200811028. Epub 2009 Feb 2.
5
Molecular and genetic analysis of condensin function in vertebrate cells.
Mol Biol Cell. 2008 Jul;19(7):3070-9. doi: 10.1091/mbc.e08-01-0057. Epub 2008 May 14.
6
Midzone activation of aurora B in anaphase produces an intracellular phosphorylation gradient.
Nature. 2008 Jun 19;453(7198):1132-6. doi: 10.1038/nature06923. Epub 2008 May 7.
7
Micromechanical studies of mitotic chromosomes.
Chromosome Res. 2008;16(3):469-97. doi: 10.1007/s10577-008-1233-7.
8
Centromeres: old tales and new tools.
FEBS Lett. 2008 Jun 18;582(14):1950-9. doi: 10.1016/j.febslet.2008.04.014. Epub 2008 Apr 22.
9
Pericentric chromatin is organized into an intramolecular loop in mitosis.
Curr Biol. 2008 Jan 22;18(2):81-90. doi: 10.1016/j.cub.2007.12.019.
10
Molecular architecture of the kinetochore-microtubule interface.
Nat Rev Mol Cell Biol. 2008 Jan;9(1):33-46. doi: 10.1038/nrm2310.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验