Dunlop Elaine A, Dodd Kayleigh M, Seymour Lyndsey A, Tee Andrew R
Institute of Medical Genetics, Cardiff University, Heath Park, Cardiff, Wales, UK.
Cell Signal. 2009 Jul;21(7):1073-84. doi: 10.1016/j.cellsig.2009.02.024. Epub 2009 Mar 9.
The mammalian target of rapamycin (mTOR) pathway is implicated in a number of human diseases, but the pathway details are not fully understood. Here we elucidate the interactions between various proteins involved in mTOR complex 1 (mTORC1). An in vitro mTORC1 kinase assay approach was used to probe the role of the mTORC1 component Raptor and revealed that certain Raptor mutations disrupt binding to eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) and prevent its subsequent phosphorylation by mTOR. Interestingly, we show that a point mutation in the highly conserved Raptor RNC domain still allows binding to mTOR but prevents Raptor association and mTOR-dependent phosphorylation of 4E-BP1, indicating that this Raptor domain facilitates substrate recognition by mTORC1. This Raptor RNC domain mutant also dominantly inhibits mTORC1 signalling to 4E-BP1, S6K1 and HIF1alpha in vivo. We further characterise the functions of the mTORC1 signalling (TOS) and RAIP motifs of 4E-BP1, which are involved in substrate recognition by Raptor and phosphorylation by mTORC1. We show that an mTOR mutant, L1460P, responds to insulin even in nutrient-deprived conditions and is resistant to inhibition by inactive RagB-RagC heterodimers that mimic nutrient withdrawal suggesting that this region of mTOR is involved in sensing the permissive amino acid input. We found that FKBP38 inhibits mTOR(L1460P), while the mTOR(E2419K) kinase domain mutant was resistant to FKBP38 inhibition. Finally, we show that activation of mTORC1 by both Rheb and RhebL1 is impaired by FKBP38. Our work demonstrates the value of an in vitro mTORC1 kinase assay to characterise cell signalling components of mTORC1 involved in recognition and phosphotransfer to mTORC1 substrates.
雷帕霉素的哺乳动物靶点(mTOR)信号通路与多种人类疾病相关,但该通路的具体细节尚未完全明确。在此,我们阐明了mTOR复合物1(mTORC1)中各种蛋白质之间的相互作用。采用体外mTORC1激酶分析方法来探究mTORC1组分Raptor的作用,结果显示某些Raptor突变会破坏其与真核起始因子4E结合蛋白1(4E - BP1)的结合,并阻止mTOR对其随后的磷酸化。有趣的是,我们发现Raptor高度保守的RNC结构域中的一个点突变仍能使其与mTOR结合,但会阻止Raptor与4E - BP1的结合以及mTOR依赖的4E - BP1磷酸化,这表明该Raptor结构域有助于mTORC1识别底物。这种Raptor RNC结构域突变体在体内也能显著抑制mTORC1向4E - BP1、S6K1和HIF1α的信号传导。我们进一步对4E - BP1的mTORC1信号(TOS)和RAIP基序的功能进行了表征,这些基序参与Raptor对底物的识别以及mTORC1对其的磷酸化。我们发现mTOR突变体L1460P即使在营养缺乏的条件下也能对胰岛素产生反应,并且对模拟营养缺乏的无活性RagB - RagC异二聚体的抑制具有抗性,这表明mTOR的该区域参与感知允许的氨基酸输入。我们发现FKBP38抑制mTOR(L1460P),而mTOR(E2419K)激酶结构域突变体对FKBP38的抑制具有抗性。最后,我们表明FKBP38会损害Rheb和RhebL1对mTORC1的激活作用。我们的工作证明了体外mTORC1激酶分析在表征参与mTORC1识别和向mTORC1底物进行磷酸转移的细胞信号成分方面的价值。