Suppr超能文献

关于微通道-纳米通道界面处浓度极化的传播。第二部分:数值与实验研究。

On the propagation of concentration polarization from microchannel-nanochannel interfaces. Part II: Numerical and experimental study.

作者信息

Zangle Thomas A, Mani Ali, Santiago Juan G

机构信息

Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Building 530, Room 225, Stanford, California 94305, USA.

出版信息

Langmuir. 2009 Apr 9;25(6):3909-16. doi: 10.1021/la803318e.

Abstract

We present results of a combined computational and experimental study of the propagation of concentration polarization (CP) zones in a microchannel-nanochannel system. Our computational model considers the combined effects of bulk flow, electromigration, and diffusion and accurately captures the dynamics of CP. Using wall charge inside the nanochannel as a single fitting parameter, we predict experimentally observed enrichment and depletion shock velocities. Our model can also be used to compute the existence of CP with propagating enrichment and depletion shocks on the basis of measured ion mobility and wall properties. We present experiments where the background electrolyte consists of only a fluorescent ion and its counterion. These results are used to validate the computational model and to confirm predicted trends from an analytical model presented in the first of this two-paper series. We show experimentally that the enrichment region concentration is effectively independent of the applied current, while the enrichment and depletion shock velocities increase in proportion to current density.

摘要

我们展示了对微通道 - 纳米通道系统中浓度极化(CP)区传播进行的计算与实验相结合的研究结果。我们的计算模型考虑了总体流动、电迁移和扩散的综合影响,并准确捕捉了CP的动态过程。通过将纳米通道内的壁电荷作为单个拟合参数,我们预测了实验观察到的富集和耗尽激波速度。我们的模型还可用于根据测量的离子迁移率和壁性质,计算具有传播的富集和耗尽激波的CP的存在情况。我们展示了背景电解质仅由一种荧光离子及其抗衡离子组成的实验。这些结果用于验证计算模型,并确认此两篇系列论文中第一篇所提出的分析模型预测的趋势。我们通过实验表明,富集区浓度实际上与施加电流无关,而富集和耗尽激波速度与电流密度成比例增加。

相似文献

3
Diffusioosmotic flows in slit nanochannels.
J Colloid Interface Sci. 2007 Nov 15;315(2):721-30. doi: 10.1016/j.jcis.2007.06.075. Epub 2007 Aug 24.
4
Combined electroosmotically and pressure driven flow in soft nanofluidics.
J Colloid Interface Sci. 2015 Dec 15;460:361-9. doi: 10.1016/j.jcis.2015.08.070. Epub 2015 Aug 31.
5
Ion concentration polarization near microchannel-nanochannel interfaces: effect of pH value.
Electrophoresis. 2012 Mar;33(5):758-64. doi: 10.1002/elps.201100501.
6
On ion transport regulation with field-effect nonlinear electroosmosis control in microfluidics embedding an ion-selective medium.
Electrophoresis. 2020 Jun;41(10-11):778-792. doi: 10.1002/elps.201900408. Epub 2020 Jan 27.
7
An improved hybrid continuum-atomistic four-way coupled model for electrokinetics in nanofluidics.
Electrophoresis. 2019 Jul;40(12-13):1678-1690. doi: 10.1002/elps.201800307. Epub 2019 Apr 17.
8
Effect of surface conduction-induced electromigration on current monitoring method for electroosmotic flow measurement.
Electrophoresis. 2020 Apr;41(7-8):570-577. doi: 10.1002/elps.201900308. Epub 2019 Nov 8.
10
Electrophoretic mobility of colloidal gold particles in electrolyte solutions.
Langmuir. 2009 Apr 21;25(8):4804-7. doi: 10.1021/la803671t.

引用本文的文献

1
Accelerating Cleavage Activity of CRISPR-Cas13 System on a Microfluidic Chip for Rapid Detection of RNA.
Anal Chem. 2025 May 13;97(18):9858-9865. doi: 10.1021/acs.analchem.5c00256. Epub 2025 Apr 30.
2
Brain-inspired computing with fluidic iontronic nanochannels.
Proc Natl Acad Sci U S A. 2024 Apr 30;121(18):e2320242121. doi: 10.1073/pnas.2320242121. Epub 2024 Apr 24.
3
Filament-free memristors for computing.
Nano Converg. 2023 Dec 19;10(1):58. doi: 10.1186/s40580-023-00407-0.
4
Electrochemical Methods for Water Purification, Ion Separations, and Energy Conversion.
Chem Rev. 2022 Aug 24;122(16):13547-13635. doi: 10.1021/acs.chemrev.1c00396. Epub 2022 Jul 29.
5
Electrochemical removal of amphoteric ions.
Proc Natl Acad Sci U S A. 2021 Oct 5;118(40). doi: 10.1073/pnas.2108240118. Epub 2021 Sep 30.
6
Overlimiting current near a nanochannel a new insight using molecular dynamics simulations.
Sci Rep. 2021 Jul 26;11(1):15216. doi: 10.1038/s41598-021-94477-x.
8
Direct Visualization of Perm-Selective Ion Transportation.
Sci Rep. 2020 Jun 1;10(1):8898. doi: 10.1038/s41598-020-65433-y.
10
Asymmetric-Fluidic-Reservoirs Induced High Rectification Nanofluidic Diode.
Sci Rep. 2018 Sep 17;8(1):13941. doi: 10.1038/s41598-018-32284-7.

本文引用的文献

2
Self-sealed vertical polymeric nanoporous-junctions for high-throughput nanofluidic applications.
Anal Chem. 2008 May 1;80(9):3507-11. doi: 10.1021/ac800157q. Epub 2008 Apr 2.
3
4
Transient effects on microchannel electrokinetic filtering with an ion-permselective membrane.
Anal Chem. 2008 Feb 15;80(4):1039-48. doi: 10.1021/ac7019927. Epub 2008 Jan 16.
5
Resistive-pulse studies of proteins and protein/antibody complexes using a conical nanotube sensor.
J Am Chem Soc. 2007 Oct 31;129(43):13144-52. doi: 10.1021/ja0739943. Epub 2007 Oct 6.
6
Free-solution oligonucleotide separation in nanoscale channels.
Anal Chem. 2007 Nov 1;79(21):8316-22. doi: 10.1021/ac0710580. Epub 2007 Sep 21.
7
Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel.
Phys Rev Lett. 2007 Jul 27;99(4):044501. doi: 10.1103/PhysRevLett.99.044501. Epub 2007 Jul 25.
9
Zeta-potential measurement using the Smoluchowski equation and the slope of the current-time relationship in electroosmotic flow.
J Colloid Interface Sci. 2003 May 15;261(2):402-10. doi: 10.1016/S0021-9797(03)00142-5.
10
Electrokinetic transport in nanochannels. 2. Experiments.
Anal Chem. 2005 Nov 1;77(21):6782-9. doi: 10.1021/ac0508346.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验