Pope Scott R, Ellwein Laura M, Zapata Cheryl L, Novak Vera, Kelley C T, Olufsen Mette S
Department of Mathematics, North Carolina State University, Campus Box 8205, Raleigh, NC 27695, United States.
Math Biosci Eng. 2009 Jan;6(1):93-115. doi: 10.3934/mbe.2009.6.93.
This study shows how sensitivity analysis and subset selection can be employed in a cardiovascular model to estimate total systemic resistance, cerebrovascular resistance, arterial compliance, and time for peak systolic ventricular pressure for healthy young and elderly subjects. These quantities are parameters in a simple lumped parameter model that predicts pressure and flow in the systemic circulation. The model is combined with experimental measurements of blood flow velocity from the middle cerebral artery and arterial finger blood pressure. To estimate the model parameters we use nonlinear optimization combined with sensitivity analysis and subset selection. Sensitivity analysis allows us to rank model parameters from the most to the least sensitive with respect to the output states (cerebral blood flow velocity and arterial blood pressure). Subset selection allows us to identify a set of independent candidate parameters that can be estimated given limited data. Analyses of output from both methods allow us to identify five independent sensitive parameters that can be estimated given the data. Results show that with the advance of age total systemic and cerebral resistances increase, that time for peak systolic ventricular pressure is increases, and that arterial compliance is reduced. Thus, the method discussed in this study provides a new methodology to extract clinical markers that cannot easily be assessed noninvasively.
本研究展示了如何在心血管模型中运用敏感性分析和子集选择,以估算健康青年和老年受试者的总全身阻力、脑血管阻力、动脉顺应性以及收缩期心室压力峰值出现的时间。这些量是一个简单集总参数模型中的参数,该模型可预测体循环中的压力和流量。该模型与大脑中动脉血流速度和手指动脉血压的实验测量值相结合。为了估算模型参数,我们使用非线性优化并结合敏感性分析和子集选择。敏感性分析使我们能够根据输出状态(脑血流速度和动脉血压)对模型参数按敏感性从高到低进行排序。子集选择使我们能够识别出一组在数据有限的情况下可估算的独立候选参数。对这两种方法的输出进行分析,使我们能够识别出五个可根据现有数据估算的独立敏感参数。结果表明,随着年龄的增长,总全身阻力和脑血管阻力增加,收缩期心室压力峰值出现的时间增加,且动脉顺应性降低。因此,本研究中讨论的方法提供了一种新的方法来提取不易通过非侵入性方式评估的临床标志物。