van den Berg Joost H, Nujien Bastiaan, Beijnen Jos H, Vincent Andrew, van Tinteren Harm, Kluge Jörn, Woerdeman Leonie A E, Hennink Wim E, Storm Gert, Schumacher Ton N, Haanen John B A G
Department of Pharmacy and Pharmacology, Slotervaart Hospital, Amsterdam, The Netherlands.
Hum Gene Ther. 2009 Mar;20(3):181-9. doi: 10.1089/hum.2008.073.
The intradermal administration of DNA vaccines by tattooing is a promising delivery technique for genetic immunization, with proven high immunogenicity in mice and in nonhuman primates. However, the parameters that result in optimal expression of DNA vaccines that are applied by this strategy to human skin are currently unknown. To address this issue we set up an ex vivo human skin model in which DNA vaccine-induced expression of reporter proteins could be monitored longitudinally. Using this model we demonstrate the following: First, the vast majority of cells that express DNA vaccine-encoded antigen in human skin are formed by epidermal keratinocytes, with only a small fraction (about 1%) of antigen-positive epidermal Langerhans cells. Second, using full randomization of DNA tattoo variables we show that an increase in DNA concentration,needle depth, and tattoo time all significantly increase antigen expression ( p < 0.001), with DNA concentration forming the most critical variable influencing the level of antigen expression. Finally, in spite of the marked immunogenicity of this vaccination method in animal models, transfection efficiency of the technique is shown to be extremely low, estimated at approximately 2 to 2000 out of 1 x 10(10) copies of plasmid applied. This finding, coupled with the observed dependency of antigen expression on DNA concentration, suggests that the development of strategies that can enhance in vivo transfection efficacy would be highly valuable. Collectively, this study shows that an ex vivo human skin model can be used to determine the factors that control vaccine-induced antigen expression and define the optimal parameters for the evaluation of DNA tattoo or other dermal delivery techniques in phase 1 clinical trials.
通过纹身进行皮内注射DNA疫苗是一种很有前景的基因免疫递送技术,已在小鼠和非人灵长类动物中证明具有高免疫原性。然而,目前尚不清楚采用这种策略将DNA疫苗应用于人体皮肤时导致最佳表达的参数。为了解决这个问题,我们建立了一个体外人体皮肤模型,在该模型中可以纵向监测DNA疫苗诱导的报告蛋白表达。利用这个模型,我们证明了以下几点:第一,在人体皮肤中表达DNA疫苗编码抗原的绝大多数细胞是由表皮角质形成细胞形成的,只有一小部分(约1%)抗原阳性的表皮朗格汉斯细胞。第二,通过对DNA纹身变量进行完全随机化,我们发现DNA浓度、针刺深度和纹身时间的增加均显著增加抗原表达(p<0.001),其中DNA浓度是影响抗原表达水平的最关键变量。最后,尽管这种疫苗接种方法在动物模型中具有显著的免疫原性,但该技术的转染效率极低,估计在所应用的1×10¹⁰份质粒中约有2至2000份发生转染。这一发现,再加上观察到的抗原表达对DNA浓度的依赖性,表明开发能够提高体内转染效率的策略将非常有价值。总体而言,这项研究表明,体外人体皮肤模型可用于确定控制疫苗诱导抗原表达的因素,并确定在1期临床试验中评估DNA纹身或其他真皮递送技术的最佳参数。